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p*  = p* (To) reference saturation water vapor mass density 
Ao = A (To) reference specific entropy  (i.e.,  the entropy 

gained by evaporating a unit mass of water 
at T0) 

Microphysical Parameterization 
Qr = Qauto + Qcol - Qevap     precipitation generation rate 
Qaut0 autoconversion of cloud to precipitation 
Qcol collection of cloud by precipitation 
Qevap evaporation of precipitation 
Qa total entropy generation rate 
Tf center of the freezing zone 
AT/ width of the freezing zone 
Q (T) structure function of freezing zone 
Dx turbulent diffusion 
F turbulent vertical flux profile in the atmo- 

spheric boundary layer 
Cx exchange coefficient 
CD drag coefficient 
U magnitude of horizontal velocity at anemome- 

ter level 
as maximum damping in sponge layer 
(j)s (z) vertical   structure  function   of damping   in 

sponge layer 
zt height of the domain top 
zs height of the sponge layer base 
zb height of the boundary layer top 
za height of the surface layer top (anemometer 

level) 
ZQ roughness length 
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Numerics 
^f (£) cubic B-spline basis function 
£ nondimensional coordinate 
(j)m (x) open form of the basis function 
ij)m [x) closed form of the basis function 
am (t) basis function amplitudes 
e (x, t) truncation error 
J continuity limit of the basis function 
j order of the derivative constraint 
lc cutoff wavelength of the derivative constraint 
TZl one dimensional physical space 
SJ spectral space 
T> = [XQ,XM] domain in physical space 
XQ location of first grid point 
XM location of final grid point 
M number of grid intervals 
Aa; = (XM ~ XQ) jM grid interval 
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Chapter 1 

INTRODUCTION 

Isaac Cline's concern was tempered by his belief that no storm could do serious 
damage to Galveston. He had concluded this on the basis of his own analysis of 
the unique geography of the Gulf and how it shaped the region's weather. In 1891, 
in the wake of a tropical storm that Galveston weathered handily, the editors of 
the Galveston News invited Isaac to appraise the city's vulnerability to extreme 
weather. Isaac ... wrote: "The opinion held by some who are unacquainted with 
the actual conditions of things, that Galveston will at some time be seriously 
damaged by some such disturbance, is simply an absurd delusion." 

Prom Erik Larson's 
Isaac's Storm: A Man, a Time, and the 
Deadliest Hurricane in History 

With the arrogance and hubris characteristic of those living in the late nineteenth and 

early twentieth centuries, Dr. Isaac Cline, chief of the local Weather Bureau, confidently 

predicted that intense hurricanes were not a plausible threat to the residents of Galveston, 

Texas. Within a decade, however, his confidence and that of Galveston's citizens was 

shattered as an intense hurricane swept across the city, destroying it and killing over 8000 

of its unprepared residents. Since this tragedy, we have actively observed and painstakingly 

studied the development and intensification of tropical cyclones, with the ultimate intent of 

avoiding what happened in Galveston over a century ago. Despite our best efforts, however, 

there are still many unanswered questions. One of the most intriguing and predominant 

questions is: What regulates the intensity of tropical cyclones? 

1.1    A Brief History of Tropical Cyclone Intensity Theory 

As the coverage and frequency of tropical observations increased during and after World 

War II, so did our understanding of the fundamental atmospheric and oceanic conditions 



that limit tropical cyclone intensity1. For instance, Palmen (1948) discovered that if the 

sea surface temperature is less than 26-27°C, the latent and sensible energy inputs from 

the ocean surface will not support tropical cyclone development or intensification. Others 

found that the interaction of a tropical cyclone with its surrounding environment also 

affects intensity. Specifically, Riehl (1948) observed that the interaction with the divergent 

flow of an upper-level ridge increases the intensity of the tropical cyclone by enhancing 

the low-level convergence and the development of deep convection. However, as shown 

by Gray (1968), if the vertical shear between the low-level vortex and upper-level flow is 

excessive, the tropical cyclone will not develop or intensify. Under these conditions, the 

deep convection is well ventilated, and is unable to sustain the temperature and moisture 

anomalies that support the thermal balance of the vortex and the undilute ascent of moist 

convection, respectively. If we understand the conditions that limit intensity, can we then 

predict the maximum possible intensity for a given set of conditions? 

Inspired by the observation that tropical cyclones do not intensify without bound but attain 

some maximum intensity prior to dissipation, several attempts were made to predict, or 

quantify, the maximum intensity using fundamental physical principles. For instance, 

Kuo (1958) and Malkus and Riehl (1960) computed the maximum tangential wind speed 

by solving the axisymmetric dynamical equations of momentum and energy conservation 

along a steady state trajectory within the boundary layer inflow. Neglecting the dynamics 

and focusing instead on the thermodynamics, Miller (1958) calculated the minimum central 

surface pressure resulting from moist adiabatic ascent within the eyewall and dry adiabatic 

descent within the eye, assuming hydrostatic balance and mixing between the eye and 

eyewall. Using the complete set of dynamic and thermodynamic equations, Kleinschmidt 

(1951) developed a two-layer model with shallow frictional inflow beneath deep moist- 

neutral outflow in gradient and hydrostatic balance. Unfortunately, all three approaches 

typically, tropical cyclone intensity is measured in terms of the maximum tangential wind speed or 
the minimum surface pressure. 



were limited by their assumptions and were never used routinely to predict tropical cyclone 

intensity.2 

Physical approaches were used instead to predict the track of tropical cyclones, while em- 

pirical (Dvorak, 1975; Hebert and Jarvinen, 1977) and statistical (Elsberry et al., 1975; 

Merrill, 1988; Jarvinen and Neumann, 1979; Pike, 1985) methods were used to analyze or 

predict intensity. Gentry (1950) points out that, by 1950, "objective techniques [had] been 

developed for forecasting the position of the tropical cyclone for periods up to 72 hours 

in advance, but relatively little success [had] been achieved in developing objective tech- 

niques for forecasting storm intensity other than those techniques which use persistence 

and climatology as the primary predictors." Even these techniques, however, were not im- 

proving our basic understanding of maximum intensity. Failing to predict extreme events 

and lacking any physical foundation, intensity forecast errors remained steady as track 

forecast errors declined (Keenan, 1982). 

To overcome this apparent empirical and statistical impasse, a renewed interest in the 

physical approach has emerged during the past two decades. Applying the lessons learned 

from Kleinschmidt (1951), Miller (1958) and others, a new set of maximum intensity 

theories have arisen (Emanuel, 1986, 1988, 1989, 1995a,b, 1997; Holland, 1997; Gray, 1998). 

Of these theories, Camp (1999) shows that the most physically consistent and widely 

accepted is that of Emanuel. 

While developing a theory to understand the instability leading to tropical cyclone devel- 

opment, Emanuel (1986) formulated an axisymmetric steady state model of the maximum 

intensity. Rather than tapping available energy from the ambient environment through 

moist convection, Emanuel theorized that the tropical cyclone extracts energy from the 

thermodynamic disequilibrium between the atmosphere and warm ocean surface. Moist 

convection then simply transports this energy reversibly to the cold upper troposphere, 

assuming that the tropical atmosphere is neutral to slantwise moist convection and the 

2For an excellent review of tropical cyclone maximum intensity theory, read the thesis of Camp (1999). 



additional latent effects due to ice microphysics are negligible. In this way, the tropical 

cyclone functions as a Carnot heat engine, transferring energy between warm and cold 

reservoirs and performing work during the process. Using an axisymmetric steady-state 

two-layer model similar to Kleinschmidt's (1951), Emanuel derived relationships for the 

radius and magnitude of the maximum tangential wind speed, and the minimum surface 

pressure. Both observations (Emanuel, 1986), and axisymmetric nonhydrostatic (Rotunno 

and Emanuel, 1987) and balanced (Emanuel, 1995a) numerical simulations appear to sup- 

port the theory, despite later modifications (Emanuel, 1995b; Bister and Emanuel, 1998; 

Schade and Emanuel, 1999). Nevertheless, some of the theory's assumptions may lead to 

an overprediction of maximum intensity. For instance, several studies indicate that the 

intensity of a tropical cyclone decreases when ice or horizontal mixing by asymmetries is 

included. 

1.2    The Influence of Ice on Tropical Cyclone Intensity 

Surprisingly, few observational and numerical studies have investigated the influence of 

ice microphysics on the evolution of tropical cyclones. The first numerical studies were 

performed by Willoughby et al. (1984), Lord et al. (1984), and Lord and Lord (1988). 

Using an axisymmetric nonhydrostatic model with relatively sophisticated precipitation 

microphysics (Lin et al, 1983), Willoughby et al. compared tropical cyclone simulations 

that included and excluded ice. Their results are presented in figure 1.1 as experiments W 

and I. When ice was included, the tropical cyclone intensified more slowly and attained a 

maximum tangential wind speed that was slightly less than the no-ice simulation. Further- 

more, the evolution of the maximum tangential wind speed in the ice simulation was more 

erratic than the no-ice simulation; but, the evolution of the minimum pressure was rela- 

tively steady in both. The reduced intensity and variability of the tangential wind in the 

ice simulation resulted from the formation and contraction of numerous secondary rings of 

convection. Each convective ring was collocated with a maximum in the tangential wind 

profile and apparently formed due to symmetric instability in regions where the potential 

vorticity was negative. 
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Figure 1.1: W, I, FR, and G Experiments — Evolution of the maximum tangential wind 
speed [{vg)max\ and minimum surface pressure (pmin) for Lord and Lord's (1988) frozen 
rain (FR), water only (W), ice (I), and graupel but no cloud ice or snow (G) experiments. 
Note that the W and I experiments are identical to the W5A and I7A experiments of 
Willoughby et al. (1984) [reproduced from Lord and Lord (1988)]. 



In a companion paper to Willoughby et al. (1984), Lord et al. (1984) examined in more 

detail the influence of the ice microphysics on the tropical cyclone intensity. Their results 

show that the decreased terminal velocity of ice particles, combined with rapid outflow 

in the upper troposphere, result in the advection of ice far from the tropical cyclone core 

and the formation of a broad region of stratiform precipitation. The resulting thermo- 

dynamic and kinematic structure is then very similar to that observed in other tropical 

(Leary and Houze, 1979; Houze, 1977; Gamache and Houze, 1985) and mid-latitude (Leary 

and Rappaport, 1987) mesoscale convective systems. Their results further show that, 

within the convective updraft of the eyewall, ascending condensate rapidly freezes above 

the 0°C isotherm, generating additional buoyancy and accelerating the updraft through 

the release of latent heat. The larger particles of frozen condensate, or graupel, quickly 

fall from the sloping updraft while the smaller particles, or ice crystals, are cast into the 

outflow where they continue to grow by deposition. Eventually, the growing ice crystals 

become graupel and snow aggregates, which settle below the 0°C isotherm and melt. The 

vertical dipole of freezing and melting produce a weak mesoscale updraft above the 0°C 

isotherm and a weak mesoscale downdraft below. It is possible that the mesoscale down- 

draft disturbs the low-level inflow and alters the tropical cyclone intensity (Willoughby 

et al., 1982; Samsury and Zipser, 1995). 

In an effort to quantify some of the qualitative conclusions of Lord et al. (1984), Lord 

and Lord (1988) performed additional experiments, similar to those of Willoughby et al. 

(1984), using two idealized ice microphysics parameterizations. Figure 1.1 compares Lord 

and Lord's "frozen rain" and "graupel" experiments (FR and G, respectively) to the ex- 

periments of Willoughby et al (W and I). Experiment FR is identical to W except that 

the latent effects of ice are included. In other words, condensate may freeze through ther- 

modynamic processes, whereas it settles, as if composed of liquid drops only, when only 

dynamic processes are considered. The results of experiment FR are nearly identical to 

W. Considering the differences between FR and I, Lord and Lord conclude that the influ- 

ence of the ice phase "by itself" on tropical cyclone development is a "secondary effect." 

In contrast, the G experiment assumes that graupel is the only form of ice.  Initially, G 



develops more slowly than the other experiments; however, it eventually becomes signifi- 

cantly more intense. Since the graupel falls more rapidly than cloud ice or snow, the drag 

on the eyewall updraft is reduced such that the tropical cyclone becomes more intense. 

Furthermore, due to the rapid settling of the graupel, there are no mesoscale downdrafts 

identified in experiment G. Overall, these results confirm the observation of Lord et al. 

(1984) that tropical cyclone intensity is modulated by mesoscale downdrafts, which are 

driven by melting ice outside of the eyewall. 

It is important to note that the structures and physical processes simulated by Willoughby 

et al. (1984) and Lord et al. (1984) had not yet been observed. According to Black 

and Hallett (1996), observations collected during flights through Hurricanes Ella (1978), 

Allen (1980), and Irene (1981) show that ascending liquid water inside the eyewall is al- 

most completely converted to ice within 5°C of the 0°C isotherm. Supercooled water was 

only detected at lower temperatures within the most intense updrafts of the eyewall. Us- 

ing Doppler-derived winds from hurricane Alicia (1983), Marks and Houze (1987) found 

that buoyant accelerations resulting from this freezing produce a vertical velocity max- 

imum above 5 km. They further observed weak convective downdrafts just outside the 

eyewall, in the region of heaviest precipitation, and a broad mesoscale downdraft beneath 

the stratiform precipitation. Houze et al. (1992) observed similar features in Hurricane 

Norbert (1984). Most importantly, Marks and Houze (1987) showed that the mesoscale 

downdraft does disturb the boundary layer inflow, which may ultimately weaken the trop- 

ical cyclone by preventing the transport of entropy and absolute angular momentum into 

the storm core. 

The observations also reveal that the concentric rings of convection, or secondary eyewalls, 

simulated by Willoughby et al. (1982) modulate tropical cyclone intensity (Willoughby 

et al, 1982; Willoughby, 1990; Black and Willoughby, 1992; Dodge et al., 1999). Ana- 

lyzing flight-level data through Hurricanes Anita (1979), David (1979), and Allen (1980), 

Willoughby et al. (1982) observed the contraction and intensification of secondary max- 

ima in the tangential wind profile.  Each of these maxima was collocated with a ring of 



moist convection. As the predominant secondary maximum contracted, the primary max- 

imum weakened and was ultimately replaced by the secondary maximum. In addition, 

Willoughby et al. (1982) showed that the eyewall replacement cycle marked the climax or 

at least an interruption in the intensification of the tropical cyclone. Along with Samsury 

and Zipser (1995), they also argued that the outflow from the secondary rings of convec- 

tion may interrupt the inflow of entropy and absolute angular momentum to the primary 

eyewall, further limiting intensification. 

1.3    The Influence of Asymmetries on Tropical Cyclone Intensity 

In addition to the ice microphysics, the neglect of asymmetries may also affect the predic- 

tion of maximum intensity. Numerous idealized numerical studies of tropical cyclone-like 

vortices suggest that asymmetries affect intensity (Enagonio and Montgomery, 1998; Mont- 

gomery and Enagonio, 1998; Möller and Montgomery, 1999; Schubert et al., 1999; Prank 

and Ritchie, 1999). For instance, Schubert et al. (1999) used an unforced barotropic nondi- 

vergent model to demonstrate that a two-dimensional symmetric vortex, which is initialized 

using a sufficiently narrow annulus of potential vorticity (PV), is barotropically unstable to 

small asymmetric perturbations. The ring corresponds to the relatively high PV generated 

by moist convective heating within the eyewall. Small asymmetric perturbations applied 

to the symmetric vortex produce a spectrum of counter-propagating vortex Rossby waves 

that exist within the PV gradient of the ring. The phase locking and mutual amplification 

of the Rossby waves (i.e., barotropic instability) results in the two-dimensional turbulent 

breakdown of the vortex. Schubert et al. (1999) showed that this turbulence preferentially 

mixes PV from the ring into the vortex center. Within a tropical cyclone, this mixing 

increases the PV in the eye but decreases the PV in the eyewall. In response to the PV 

changes, the tangential wind speed accelerates in the eye and decelerates in the eyewall. 

Furthermore, to maintain gradient balance inside the eye, the central pressure must also 

decrease. Both the observational data (Kossin and Eastin, 2000) and other numerical sim- 

ulations (Montgomery et al., 2000; Kossin and Schubert, 2000) support this model of the 



inner-core evolution. By definition, however, this mixing process and its effect on intensity 

are absent from maximum intensity theories that rely on the axisymmetric assumption. 

Of course the highly idealized model of Schubert et al. (1999) neglects the complex vertical 

structure of the three-dimensional PV distribution, and the frictional and diabatic pro- 

cesses that lead to its generation and destruction. In their simulated vortex, the barotrop- 

ically unstable distribution of PV is imposed initially and then is advected by the ensuing 

turbulent flow. In a tropical cyclone, however, convective heating continuously generates 

PV. In other words, the Schubert et al. (1999) model is unforced, whereas the natural 

atmosphere is forced. This limitation was recognized by Schubert et al. (1999) when they 

noted that "there remains the question of the relevance of the concepts presented here to the 

moist convective environment in real hurricanes... This difficult question might partially 

be answered through the use of PV diagnostics on the output of 'full-physics' models." 

No full-physics model has yet been used to diagnose the fine-scale structure of the PV 

within a tropical cyclone; however, several theoretical models and observational studies 

have provided some initial insight. Theoretically, Schubert and Alworth (1987), and Möller 

and Smith (1994) investigated the PV evolution of a symmetric vortex using Eliassen's 

(1952) balanced vortex model with different prescribed heating functions. Applying a max- 

imum heating rate of 27 K day-1 for 12 hours, Möller and Smith produced a 50-55 m s_1 

vortex with a 50 km radius of maximum tangential wind. Assuming the vortex is at 20°N, 

the associated PV anomaly had a maximum of over 170 PVU3 located at the surface. Ob- 

servationally, several studies have diagnosed the horizontal PV distribution to investigate 

tropical cyclone motion (Shapiro and Franklin, 1995; Shapiro, 1996; Wu and Emanuel, 

1995a,b); however, only recently has the vertical structure been examined (Shapiro and 

Franklin, 1995; Molinari et al., 1995, 1998). For example, Shapiro and Franklin (1995) 

diagnosed a maximum PV anomaly of 100 PVU inside the radius of maximum tangential 

wind of Hurricane Gloria (1985), using Omega dropwindsonde and airborne Doppler radar 

3A potential vorticity unit, or PVU, is equal to 1 x 10 6 K m2 kg  1 s  1. 
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data. Given the "data deficiencies" inside the eye and the approximations required to di- 

agnose the PV, however, it is clear that the fine-scale structure and magnitude of the PV 

in the eyewall has yet to be observed, although such an analysis of the observational data 

is in progress (Kossin, 2000, personal communication). 

1.4    Overview 

Given the limits of our understanding discussed above, we investigate the sensitivity of a 

numerically simulated tropical cyclone to variations of the physics and numerics, with the 

ultimate goal of better understanding the parameters limiting tropical cyclone intensity. 

We first develop an appropriate model based on the equilibrium moist thermodynamics 

and superior numerics formulated by Ooyama (1984, 1987, 1990, 1995, 1997, 1999, 2000) 

(chapter 2). Since scarce computer resources still prevent the three-dimensional modeling 

of tropical cyclones at resolutions fine enough to capture many observed processes [e.g., sec- 

ondary eyewall cycles, see Liu et al. (1997)], we use the two-dimensional, or axisymmetric, 

version of the model. This choice also allows the easy comparison of the simulated steady 

state tropical cyclone with intensity theories that assume axisymmetry. To investigate the 

generation of PV as proposed by Schubert et al. (1999), we next derive a new expression 

for the PV of a moist precipitating atmosphere using the virtual potential temperature 

(chapter 3). This new form of moist PV reduces to the dry PV in the limit of zero mois- 

ture and is exactly invertible, unlike the moist PV derived using the equivalent potential 

temperature. With the model and moist PV diagnostics defined, we then perform a control 

experiment, or baseline simulation, to validate the model against observations, theory, and 

other axisymmetric tropical cyclone simulations (chapter 4). To explore the sensitivity of 

the steady state to variations of the model numerics and physics (e.g., grid resolution and 

cloud microphysics), we compare the control experiment to a series of sensitivity experi- 

ments (chapter 5). Finally, we discuss what we have learned from these experiments as it 

relates to tropical cyclone intensity (chapter 6). 



Chapter 2 

MODEL DERIVATION 

The scientist is a practical man and his are practical (i.e., practically attainable) 
aims. He does not seek the ultimate but the proximate. He does not speak of the 
last analysis but rather of the next approximation. His are not those beautiful 
structures so delicately designed that a single flaw may cause the collapse of the 
whole. The scientist builds slowly and with a gross but solid kind of masonry. If 
dissatisfied with any of his work, even if it be near the very foundations, he can 
replace that part without damage to the remainder. On the whole he is satisfied 
with his work, for while science may never be wholly right it certainly is never 
wholly wrong; and it seems to be improving from decade to decade. 

Gilbert Newton Lewis 
American Chemist (1875-1946) 

In this chapter, we formulate an axisymmetric tropical cyclone model using the nonhy- 

drostatic, primitive equations and numerical schemes developed by Ooyama (1984, 1987, 

1990, 1995, 1997, 1999, 2001). We begin by reviewing the fundamental physics of a moist, 

precipitating atmosphere, as expressed through a closed system of prognostic and diagnos- 

tic equations (section 2.1). This review is followed by a discussion and evaluation of the 

numerical methods used to solve the predictive equations (section 2.2). Last, we combine 

the approximate physics and numerics to obtain the desired axisymmetric tropical cyclone 

model (section 2.3). For comparison, appendix A contains a tabular summary of the basic 

features and findings of past axisymmetric tropical cyclone models. 
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2.1    Physics: Formulation of Moist Atmospheric Dynamics 

Following Ooyama (1990, 1995, 2001), we formulate a nonhydrostatic, primitive equation 

model, which contains the essential physics needed to simulate a moist, precipitating atmo- 

sphere. The model atmosphere is composed of moist air parcels similar to that symbolized 

in Figure 2.1. After defining the basic assumptions and conservative variables that describe 

the instantaneous state of this parcel, we present a system of hydrodynamic equations to 

predict the parcel's future state. To close this system of equations, we further derive a set 

of thermodynamic equations to diagnose the equilibrium state of the parcel. 

2.1.1    Semantics: Basic Assumptions and Conservative Variables Defined 

Basic Assumptions: Several basic assumptions are needed to simplify the model develop- 

ment. As with any model of a continuous fluid, we first assume that the parcel contains 

a sufficiently large number of molecules such that its state is represented by equilibrium 

thermodynamics, yet the number of molecules must also be sufficiently small such that 

the parcel's matter is distributed homogeneously. Second, we assume that the parcel's 

matter is in local thermodynamic equilibrium and that the equation of state for all gases 

is given by the ideal gas law. Third, we assume that the condensate volume is negligible 

in comparison to the parcel volume, so that the specific volume of the condensate may be 

neglected in the equation of state. 

Mass: Given these assumptions, we next define the distribution of matter within the parcel. 

To maximize the simplicity of the model, we include only those constituents and phases 

of matter needed to simulate moist convection. In addition, we represent the matter in 

bulk form, using mass densities expressed in terms of subscripted p. To simulate moist 

convection, then, the total mass (p = pa + pw) must contain dry air (pa) and water 

{pw = Pv+ Pc + Pr), which potentially exists in different phases, including vapor (pv) and 

condensate. The condensate is further subdivided into cloud (pc) and precipitation (pr). 

The criteria that distinguish precipitating condensate from airborne condensate and the 
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Figure 2.1: Parcel of moist air with total mass density p = pa + pw, which is composed of 
dry air and total water with mass densities pa and pw, respectively. The total water mass 
density, pw = pv + pc + pr, is further separated into the mass densities of water vapor (pv) 
and of condensate (liquid and/or solid), which includes cloud (pc) and precipitation (pr). 
The dry air and airborne water, which has mass density pm = pv+Pc, move with velocity 
u = (u,v,w), while the precipitation falls relative to the volume with terminal velocity 
U = (0,0, W) or relative to the Earth with velocity ur = u + U. Note that the lines of 
demarcation enclosing the different mass densities illustrate the partition of mass, but not 
its location; we assume that all mass is distributed uniformly over the parcel volume. 

conditions that determine the formation of each are defined later. Keep in mind that the 

condensate densities represent the distribution of condensate mass over the parcel volume 

and not the density of the condensate itself. The further partitioning of condensate into 

solid and liquid phases will be introduced later. 

Momentum: The mass of the parcel is in motion, so it has momentum. We assume 

that the gases move with the parcel, which has velocity (i.e., momentum per unit mass) 

u = (u, v, w), wherein u, v, and w are the three velocity components. Condensate, however, 

may move relative to the parcel, depending on the size of a given condensate particle. We 

assume that condensate particles instantaneously adjust to changes in the flow. In other 

words, the force balance is maintained between the downward pull of gravity and the 

upward drag produced by the frictional stress acting on the particle surface, which is a 

function of its terminal velocity U = (0,0, W). As the particle size increases, the surface- 

to-volume ratio decreases; thus, U must increase so that the frictional stress acting on the 

particle surface increases to overcome the gravitational pull acting on the mass within the 
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much larger particle volume. Rather than represent all possible particle sizes, the implied 

condensate size distribution within the model is discretized into two modes: condensate 

that moves with the flow (i.e., airborne condensate or cloud with W = 0) and condensate 

that moves relative to the flow (i.e., precipitating condensate or rain/snow with W ^ 0). 

Thus, the dry air, water vapor, and cloud all move with the parcel, while precipitation 

moves relative to the parcel with settling velocity U or relative to the ground with velocity 

ur = u + U = (u, v, w + W). Combining these definitions, we obtain an expression for the 

mass-weighted, mean velocity (i.e., total momentum per unit total mass), 

ü _ (Pa + Pm) U + Pr (U + U) _ u  (   Pr v yy 

P P 

wherein ü = (ü, v, w) = (u, v, w + prW/p). Since the water vapor and cloud move together, 

we combine them here to form the airborne water, which has mass density pm = Pv + Pc- 

Entropy: The mass of the parcel also has thermodynamic energy. Since most atmospheric 

motions are nearly adiabatic (i.e., isentropic) and in approximate thermodynamic equi- 

librium over short time scales, and since energy and entropy are related through the first 

law of thermodynamics, this energy is more conveniently expressed in terms of entropy. 

Specifically, we use the total entropy density, a = aa + av + ac + ar, which comprises 

the entropy densities of dry air (CTQ), water vapor (av), cloud (CTC), and precipitation (aT). 

We assume that the temperature of the cloud and precipitation is always the wet-bulb 

temperature {Tw), whether the atmosphere is saturated or unsaturated. This implies that 

the cloud and precipitation have the same specific entropy, C (T), such that ac = pcC (Tw) 

and ar = prC (Tw). 

In addition to the entropy, there are several other thermodynamic state variables that must 

be defined. The air within the parcel is assumed to have temperature T and total pressure 

p. Using Dalton's law of partial pressures, p = pa +pv is decomposed into the dry air (pa) 

and water vapor (pv) partial pressures, both of which are related to T through the ideal 

gas law.  Variations in pv due to particle geometry, surface contaminants, or ventilation 
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are neglected such that at saturation, pv = E(T), where E (T) is the saturation vapor 

pressure over a plain surface of condensate. From this, we further define the mass density 

of saturated vapor, p* (T) = E (T) /RvT, wherein Ry is the gas constant for water vapor. 

2.1.2    Hydrodynamics: Prognostic Equations of Conservation Principles 

With the variables symbolizing the current state of the parcel defined, we next discuss 

the conservation relationships, or prognostic equations, that predict the future state of 

the parcel. The five (seven scalar) prognostic equations, in conservative flux form, for the 

densities of dry air mass (pa), airborne water mass {pm), precipitation mass (pr), total 

momentum (pü), and total entropy (a) are given by 

^ + V-(pau) = DPa, (2.2) 

<^ + V-(pmu) = -Qr + DPm, (2.3) 

^ + V • (pru) = - V • (prU) + Qr + Dßr, (2.4) 

ö(pü) 
dt 

+ V • (püu) + 2ft x (pü) + Vp + pV$ = -V • [pr (u + U) U] + QrU + £>pü, (2.5) 

^ + V • (an) = -V • (arU) + Qa + Da, (2.6) 

wherein fl is the Earth's angular velocity, and $ is the potential of the Earth's gravity. 

The terms on the left of the equality represent the explicit physics, while the terms on the 

right represcent implicit physics, which must be parameterized. Specifically, the Q-terms 
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symbolize internal sources or sinks of mass, momentum, and entropy due to precipitation 

(Qr) and entropy (Qc) generation. Similarly, the D-terms and terms involving U (i.e., 

W) represent external sources or sinks due to turbulent diffusive and precipitation fluxes, 

respectively, of mass, momentum, and entropy across the parcel's boundary. While the 

explicit terms are well understood, some additional explanation is needed to understand 

the physics of the implicit terms as applied to this model. 

Internal Sources (Q-terms): The Qr-term in (2.3) and (2.4) symbolizes the conversion of 

water mass from airborne water to precipitation. For example, positive Qr may represent 

the conversion of cloud to precipitation by autoconversion or accretion, or vapor to precip- 

itation by condensation or deposition. Likewise, negative Qr may represent the conversion 

of precipitation to cloud by particle breakup, or precipitation to vapor by evaporation or 

sublimation. Conversions between vapor and cloud are internal to the airborne water and 

implicitly included in (2.3). 

A Qr-term also appears in (2.5). This term results from the velocity discontinuity between 

airborne and precipitating condensate. Inside a real cloud, gravity accelerates growing 

precipitation particles, gradually increasing the precipitation momentum. Inside a model 

cloud, however, this same process occurs instantaneously as cloud with W = 0 is converted 

to precipitation with W ^ 0. This instantaneous acceleration increases the precipitation 

momentum at the rate QTW. To fully understand the origin of this term, see the detailed 

derivation of (2.5) presented in appendix B. 

Interestingly, no term involving the conversion of water vapor to cloud appears in (2.6). In 

contrast, models that use the potential temperature (6) to represent the dry air entropy 

(e.g., Klemp and Wilhelmson, 1978) must include such a term to represent the transfer 

of entropy as condensation releases latent energy and warms the dry air. When the total 

entropy is used, this energy transfer is an internal process; thus, no additional heating term 

is needed. The only other form of heating is that due to nonconservative entropy sources 

or sinks such as radiation, which are symbolized by Qa, and diffusive mixing, which is 

discussed below. 
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External Sources (D-terms and W -terms): The Z>-terms symbolize macroscale changes of 

the parcel's mass, momentum, and entropy due to microscale turbulent variations within 

the parcel. Previously, we assumed that the parcel is relatively small such that its internal 

structure is nearly homogeneous; however, when the parcel size approaches that of a typical 

grid cell in a numerical model, variability of this structure can lead to exchanges of mass, 

momentum, and entropy between parcels. To account for this effect, we assume that 

the average structure represents the macroscale state of the parcel, while the variations 

from this structure represent microscale turbulence. Equations (2.2)-(2.6) should thus 

be regarded as Reynolds-averaged versions of the continuous equations, with the D-terms 

representing the divergence of the turbulent fluxes. 

Equations (2.4)-(2.6) also include a term involving external fluxes by precipitation, which 

are unique to this model. As precipitation falls from the parcel, it transports not only 

mass, but momentum and entropy as well. Most other models neglect these fluxes by 

assuming that the precipitation process is pseudoadiabatc. Furthermore, along the lower 

boundary, W ^ 0; thus, precipitation transports mass, momentum, and entropy from the 

domain. 

One last comment is needed regarding the precipitation. Since the precipitation moves 

relative to the parcel, a separate conservation equation is required to track its mass. By 

this reasoning, there should also be separate conservation equations for the precipitation 

momentum and entropy. However, cloud chamber experiments reveal that precipitation 

particles rapidly (i.e., within 5-10 s) adjust to mechanical (Pruppacher and Klett, 1996) 

and thermodynamic (Kinzer and Gunn, 1951) equilibrium. Mechanically, the particles have 

negligible inertia; therefore, their motion rapidly adjusts to changes in the parcel motion 

and to gravitational accelerations. Likewise, thermodynamically, the energy required to 

change the temperature of water is much less than that required to change its phase; 

therefore, the particle temperature rapidly adjusts to that of its environment, while the 

precipitation mass changes at a finite rate (i.e., Qr). Assuming that these adjustments are 

instantaneous, we may diagnose, rather than predict, both the precipitation momentum 



18 

per unit mass relative to the parcel (W) and the entropy density [ar (Tw) = prC (Tw)], 

including them as part of the totals in (2.5) and (2.6). 

In summary, (2.2)-(2.6) represent a system of 7 scalar prognostic equations involving the 

23 dependent variables: pa, pm, Pr, P, Qr, pü, pv, pw, u, v, w, W, p, a, ar, Qa, DPa, 

DPm, DPr, Dpa, Dpy, Dp-uj, and Dc. Clearly this system is not closed and cannot be solved 

until additional diagnostic equations are found for u, v, w, W, p, p, ar, Qr, Qa, and the 

D-terms. Given p = pa + pm + Pr, W, and the prognostic variables, we simply diagnose u, 

v, and w using (2.1). This leaves p, ar, W, Qr, Qa, and the D-terms unknown. We define 

these variables in the next section using equilibrium thermodynamics and microphysical 

parameterizations. 

2.1.3    Thermodynamics: Diagnostic Equations Representing Fluid State 

Although all processes in the atmosphere are irreversible, some are approximately re- 

versible. For example, condensation of water vapor to cloud is a nearly reversible process. 

Contrast this with precipitation falling from a saturated to an unsaturated parcel, which is 

far from reversible. Considering the reversible processes first, we diagnose the equilibrium 

state of the parcel using Ooyama's (1990) equilibrium moist thermodynamics. Next, we 

formulate the irreversible, or nonequilibrium, processes using empirically-derived micro- 

physical parameterizations. 

2.1.3.1    Reversible Processes: Equilibrium Phase Changes of Water 

Ooyama (1990) proposed that the fundamental role of hydrodynamics is to predict the evo- 

lution of the conservative, or extensive, properties of a fluid, such as its mass, momentum, 

and entropy, while the role of thermodynamics is to diagnose the intensive properties, or 

the state, of the fluid. Since p and T are not conservative quantities, they should not be 

predicted directly but diagnosed from the predicted values of the conservative quantities 

Pa, Pm, Pr, and a. 
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The needed diagnostic equations are derived using the classical reversible, or equilibrium, 

thermodynamics. Close inspection of the predictive variables reveals that we lack sufficient 

information to determine the thermodynamic state of the parcel. For instance, neglecting 

precipitation for the moment, we know the predicted pm, but we do not know the fraction 

of pv or pc. However, if we know that the air is unsaturated and in equilibrium, then 

pv = pm and pc = 0. Likewise, if we know that the air is saturated and in equilibrium, 

then pv = p*v (T) and pc = pm - pv. Using this information, and the predicted values 

of pa, Pm, Pr, and a, Ooyama (1990) developed a systematic method for determining the 

equilibrium moist thermodynamic state of the parcel. 

Neglecting precipitation for the moment, we define two functions of entropy, representing 

two hypothetical states of water within a parcel for the same a. In state 1, represented by 

entropy Si, we assume that there is no condensate. The water is entirely vapor, even if 

supersaturated. In state 2, represented by entropy S2, we assume that the water is always 

saturated at the wet bulb temperature, T2. Using a as the predicted entropy of the parcel, 

the entropy functions of the two states are then given by 

Sl(Pa,Pm,Ti)    —    a, ,27) 
S2{pa,Pm,T2)     =     O. 

Since pa, pm, and a are known, the two states are distinguished by their respective tem- 

peratures, Ti and T2. 

If precipitation is present, we must extend the reversible thermodynamics to include irre- 

versible processes. Since state 1 excludes condensate, we subtract the precipitation entropy, 

ar (T2) = prC (T2), from a. In contrast, since state 2 includes condensate, we simply add 

Pr to pm. With these two changes, (2.7) becomes 

Si (pa, Pm,Ti) + prC (T2)     =    CT, ^ g* 
Si {pa, Pm + Pr, T2)     =    O. 
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wherein a now includes ar. Integrating the entropy equation from a predefined zero- 

entropy reference state (denoted by subscript zero), Ooyama (1990, 1995) derived the 

following expressions for the entropy functions: 

+    Pm 

S2(Pa,Pw,T2)     =    Pa 

+    Pw C(r2) + ÜS>A(7>.) 

\PanJ 

(2.9) 

(2.10) 

wherein 

C (T) = c,v In (£) - R, In (^) - A (T) + A0 (2.11) 

is the specific entropy of condensate at T, A (T) = L (T) /T is the specific entropy gained 

per unit mass of condensate vaporized at T, and L (T) is the specific latent heat of vapor- 

ization of condensate at T. The remaining parameters are defined in the List of Symbols. 

Since a is a function of Ti and T2 for state 1 in (2.7), the temperature T2 must be obtained 

from 52 before T\ may be diagnosed from S\. 

Figure 2.2 illustrates hypothetical curves of S\ and 52 as a function of T and pm for a 

given pa and, for simplicity, pr = 0. The marginal saturation point (MSP) represents 

the boundary between unsaturated and saturated air for state 1. To the left of the MSP, 

T\ and T2 are the temperatures of unsaturated and saturated moist air, respectively. To 

convert moist air from state 1 to state 2, water must be "borrowed" from pc and evaporated 

until the moist air becomes saturated at the wet bulb temperature T2. In this case, state 

1 is clearly the equilibrium state and T\ > T2, due to evaporative cooling. To the right of 
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Figure 2.2: Relationship of 5i and 52 to T and pm for a given pa, neglecting precipitation. 
Function Si applies when there is no condensate (pc = 0), while St applies when the 
water vapor is always saturated [pv = p* (T)]. The function occupying an equilibrium 
state determines the temperature of the system. Function Si is bisected by the marginal 
saturation, which is the point where pv = p* (T). To the left of this point, the atmosphere 
is unsaturated. To satisfy the saturation condition on 52, condensate is added to the 
system and evaporated until the wet bulb temperature is reached. Since this addition is 
physically impossible, Si is chosen as the equilibrium state. To the right of the marginal 
saturation point, the atmosphere is either saturated with condensate or is supersaturated. 
Since supersaturation typically represents a state of nonequilibrium, 52 is chosen as the 
equilibrium state. 

the MSP, T\ is the temperature of supersaturated moist air while T2 is the temperature of 

saturated moist air with condensate. To convert moist air from state 2 to state 1, water 

must be condensed until the moist air is saturated at temperature T\. In this case, state 

2 is the equilibrium state and T2 > Ti, due to latent warming. As a result, for the system 

to be in equilibrium, the temperature must satisfy 

T = MAX(Ti,T2), (2.12) 

from which pv, pc, p, Pa,Pv, and p are obtained from 
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Pv = Pm, Pc = 0, pv = PvRvT,   if T = T\ > T2, 
pv = p*v(T),   pc = pm-Pv,   pv = E{T),    ifT = T2>T1) 

(2.13) 

P = Pa+Pm+Pr, (2-14) 

Pa = paRaT, (2.15) 

P=Pa+Pv (2-16) 

2.1.3.2   Irreversible Processes: Microphysical Parameterizations 

Ultimately, the least understood terms in (2.2)-(2.6) are arguably the most important. 

The irreversible processes symbolized by W, Qr, Qa, and the D-terms are the driving 

forces of our atmosphere; however, the physics from which these terms are derived are 

extremely complex and not fully understood. Incorporating much of these complex physics 

is theoretically possible; but as a first step in the development of this model, we choose 

instead to use simpler, empirically-derived parameterizations. These parameterizations are 

believed to capture the essential microphysics, yet are computationally inexpensive, and 

include the precipitation, ice, radiation, and turbulence microphysics. 

Precipitation: Since moist convection drives tropical cyclones, probably the most impor- 

tant microphysical parameterization is that representing the precipitation process. This 

parameterization may be either implicit (Kuo, 1965; Yamasaki, 1968a,b; Rosenthal, 1969, 

1970a,b; Sundqvist, 1970a; Anthes, 1971b, 1972; Jones, 1977), in which case the precip- 

itation microphysics are parameterized indirectly through a convective parameterization, 

or explicit (Yamasaki, 1977a,b; Willoughby et al., 1984; Rotunno and Emanuel, 1987). To 

avoid the inherent problems with implicit parameterizations as applied to tropical cyclones 

models (Rosenthal, 1978, 1979; Nguyen et al., 2000), we choose an explicit approach. 
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In choosing an explicit approach, however, we must carefully avoid unnecessary complexity. 

The more complex precipitation parameterizations (e.g., Orville and Kopp, 1977; Lin et al., 

1983; Schoenberg Ferrier et al, 1995; Walko et al., 1995) involve many additional predictive 

and diagnostic equations than already presented here. However, lacking the necessary data, 

we have thus far been unable to verify that such parameterizations accurately reproduce 

the microphysical structure of clouds within a tropical cyclone. As a result, it is difficult 

to interpret changes in tropical cyclone structure or evolution in terms of these additional 

microphysical details. 

To gain further insight into the basic dynamics of axisymmetric tropical cyclones, we choose 

to avoid complex microphysical schemes and apply a simple bulk approach. Specifically, 

we use a modified form of Kessler's parameterization, proposed by Klemp and Wilhelmson 

(1978) and further modified by Ooyama (1995), to compute QT = Qauto + Qaccr-Qevap and 

W. This parameterization includes the autoconversion of cloud to precipitation (Qauto) 

and the accretion of cloud by precipitation (Qaccr)- In addition, if the parcel is unsaturated, 

precipitation is permitted to evaporate (Qevap)- The details of the parameterization are 

presented in appendix C. 

Ice: To this point, we have neglected the explicit partitioning of condensate into its liquid 

and solid phases. This is not surprising, considering the additional complexity that the 

inclusion of ice introduces into the model. When including ice, we must consider the 

nonequilibrium phase changes of water to ice in mixed-phase clouds. Also, we must consider 

the different species of ice, as defined by their complex geometry (e.g., ice crystals, snow 

aggregates, graupel, etc.), and how best to predict their evolution. 

Because of this complexity, virtually all of the early tropical cyclone models neglected the 

ice phase, assuming that water remains liquid at all temperatures. Willoughby et al. (1984) 

and Lord et al. (1984) were the first to include a detailed microphysical representation of 

ice in an axisymmetric tropical cyclone model. Their model contained five species of 

condensate (i.e., cloud water, rain, cloud ice, snow, and graupel) with thirty different 

conversion processes among the species.  Due to the complexity of the ice microphysics, 
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however, we believe it is difficult to determine the cause-and-effect relationships among 

the changes in the storm structure and the various ice species (Lord et al., 1984). 

As a compromise between the extremes of including ice with all of its complexity or ne- 

glecting ice, Ooyama (1990) chose instead to represent the liquid and solid phases in terms 

of a single, synthesized condensate. This single phase, or combined condensate, has the 

properties of water for temperatures above a specified freezing zone and the properties of 

ice for temperatures below this zone. Within the freezing zone, the properties of the liquid 

and solid phases are interpolated. Specifically, Ooyama interpolates the specific entropies 

of water, Cw (T), and ice, Cj (T), i.e., 

C(T) = n (T) Cw (T) + [1 - fi (T)] d (T), (2.17) 

to obtain the specific entropy of the combined condensate, C(T), wherein 

»PI-5 
(rp   rp 

(2.18) 

is the interpolation function, with Tf and AT/ being the center temperature and width 

of the freezing zone, respectively. The expressions for Cw and Cj are found in Ooyama's 

paper. 

The result of this interpolation is a large positive anomaly in the specific heat of the 

combined condensate, cc{T), centered at Tf (see Ooyama, 1990, fig. 3). To understand 

the physical implications of this anomaly, consider a small drop of water that is being 

cooled. Due to the near constant cc (T) for T^>Tf, the drop gradually releases energy as 

it is cooled until its temperature nears the freezing zone. Here, cc (T) increases dramatically 

such that any further cooling of the drop produces a large release of energy. This, of course, 

simulates the release of latent heat due to the phase change of liquid water to ice as the 
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drop freezes. Any nonequilibrium phase changes due to the Bergeron-Findeisen process 

are assumed to be included in this parameterization. 

In addition to C (T), we also require an expression for E (T), since this term is yet undefined 

in the thermodynamic diagnosis presented above. To obtain E(T), Ooyama (1990) used 

an integrated form of Kirchoff's equation, with the Clausius-Clapeyron equation inserted 

for the latent heat L (T), to obtain the first-order differential equation 

dT 
Tin 

E(T) 
E„ WO    J 

} = nco^Tb I       L EWo  J J 

+ p-npn^lrin^]}, (2.19, 

wherein Ew (T) and E{ (T) are the saturation vapor pressures over a plane surface of liquid 

water and ice, respectively, and EWo and Ei0 are their reference values at T0. Note that 

EWo is used as the reference state for the combined condensate. Integrating (2.19), with 

the boundary condition E (T) -> EW(T) for T » Tf, we obtain E(T). To complete 

this parameterization, we have used the Goff-Gratch formulae (List, 1949) for Ew (T) and 

Ei(T). 

Not only does the ice phase affect the thermodynamics but also the hydrodynamics as it 

alters the settling velocity (W) of the precipitation. Due to its complex geometry, the drag 

on an ice particle is much greater than that on a water drop. Typically, the average fall 

speed of particles accelerates from 1 - 2 m s"1 above the melting level to about 8 m s_1 

below (Pruppacher and Klett, 1996; Black and Hallett, 1996; Böhm, 1992)1. To account 

for this acceleration, Ooyama (1995) added an ice modification factor to the diagnostic 

equation for W, as shown in (C.7). Since changes in W also affect the accretion rate and 

the ventilation of condensate particles, (Ooyama, 2001) added the ice factor to expressions 

(C.3) and (C.5). 

'in the stratiform region, the terminal velocity of snow aggregates is 1-2 m s  1; whereas, in the 
convective region, the terminal velocity of graupel is 4-6 m s_1. 
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Radiation: Since tropical cyclones persist for many days, we naturally wonder if the slow 

net cooling by outgoing longwave radiation significantly alters their structure and evolution. 

Diabatic warming near the storm core due to convective heating, and adiabatic warming in 

the surrounding environment due to compensating subsidence, gradually increase the mean 

temperature of the atmosphere (Kuo, 1965; Yamasaki, 1968a). Assuming that the excess 

internal energy is not exported as rapidly as it is generated, the surface pressure will slowly 

decrease, which increases the saturation equivalent potential temperature. According to 

Rotunno and Emanuel (1987), this increases the tropical cyclone intensity by increasing the 

surface energy flux away from the storm core. Kasahara (1961) estimated that a uniform 

cooling of 1.0°C day-1 would balance the net warming, leaving the tropical cyclone in a 

steady state. 

Past axisymmetric tropical cyclone simulations showed that including radiative cooling is 

of secondary importance and therefore negligible. Representing the radiative cooling as 

a diabatic mass flux in his three-layer model, Ooyama (1969) found that uniform cooling 

has little effect on the storm behavior. However, he did note that nonuniform cooling 

due to the presence of clouds could alter this result, which was later verified by Sundqvist 

(1970b). Using a prescribed vertical profile of radiative cooling in the cloud-free regions, 

Sundqvist (1970b, see fig. 2) found that the tropical cyclone intensified about 20 hours 

earlier than without the cooling, but that the overall intensity was about the same. In 

a similar experiment, using a more sophisticated radiation parameterization (Sasamori, 

1968), Anthes (1971a, see fig. 10) verified that tropical cyclone intensity remains approxi- 

mately unchanged. Neglecting radiative cooling, Willoughby et al. (1984, see fig. 3) showed 

a decrease of only 0.5 mb day-1 of the central surface pressure during the steady-state pe- 

riod of their simulation. These results suggest that including radiative cooling has only a 

slight modifying effect; therefore, rather than parameterize it in a costly or ad hoc fashion, 

we instead neglect radiative cooling (i.e., Qa = 0) at this stage of the model development. 

Turbulent Diffusion: Recall that the D-terms represent resolved, macroscale forcing due 

to unresolved, microscale turbulent fluctuations. In general, these terms are assumed to 

have two parts, i.e., 
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Dx = D™ + DABL, (2.20) 

wherein D^A and DABL are the turbulent flux divergences in the free atmosphere (FA) and 

the atmospheric boundary layer (ABL), respectively, for x = Pa,Pm,Pr,pü,pv,pw, or a. 

Although D%A is a physical term representing unresolved turbulent mixing, historically 

it has become a numerical term used to control computational instability. In a three- 

dimensional turbulent fluid, nonlinear interactions produce a cascade of kinetic energy 

to smaller scales. Physically, this cascade extends to the dissipation scale, where kinetic 

energy is converted to thermodynamic energy [another process generally neglected (Bister 

and Emanuel, 1998)]. Numerically, the cascade is arrested at the smallest resolved scale of 

the model, where the kinetic energy accumulates. Almost all atmospheric models control 

this accumulation, or instability, using a form of turbulent diffusion parameterized through 

D£
A

. Physically, we argue that in a cloud-resolving model the mixing due to unresolved 

eddies is negligible compared to that of the resolved eddies; however, numerically, we must 

control the instability. Rather than solve a numerical problem by altering the physics, we 

assume that 

D™ = 0, (2.21) 

and control the instability by spectrally filtering the smallest resolved signal using the 

numerics (see section 2.2). 

In earlier axisymmetric tropical cyclone models (Anthes, 1971a; Rosenthal, 1978; Rotunno 

and Emanuel, 1987), D?A has also been used to represent mixing by horizontal processes. 

For example, Anthes used Smagorinsky's (1963) equation for horizontal diffusion, 

£>^ = (fc,Aa;)2|D|V2x, (2-22) 
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wherein ks « 0.2, Ax is the grid spacing, and |D| is the deformation. However, it has 

been demonstrated that asymmetric mixing, if due primarily to barotropic instability, 

does not mix uniformly, as with diffusion, but preferentially toward the tropical cyclone 

core (Schubert et al., 1999; Kossin, 2000a; Kossin and Schubert, 2000; Nolan and Mont- 

gomery, 2000b,a). Thus, rather than crudely parameterize this mixing, since it is not 

well understood observationally, we instead neglect it and consider the implications of this 

assumption when interpreting the results. 

Near the surface, we cannot assume that mixing by small-scale eddies is negligible in com- 

parison to the resolved eddies as above, since these small-scale eddies are essential to the 

vertical advection of mass, momentum, and entropy to and from the surface. Although 

there are a wide range of approaches to simulate the ABL, with varying degrees of com- 

plexity, we again choose a very simple approach. 

To begin, we let 

DiBL = ^ (2-23) 

wherein Fx (z) is the vertical turbulent flux of % = pm,pu,pv, and a. Here, we assumed 

that the dry air mass is materially conserved (i.e., FPa = 0), that the precipitation rapidly 

falls through turbulent eddies (i.e., FPT = 0), and that there is no turbulent transport of 

vertical momentum (i.e., Fpw = 0). While sophisticated ABL parameterizations predict 

the complex vertical structure of the retained fluxes, we simply assume that they have a 

known structure: 

Fx(z)=Fx(za)4>a(z), (2.24) 

wherein Fx (za) is the flux at the top of the constant flux surface layer, za is the prescribed 

surface layer depth, and <f>a (z) is the vertical structure function. This structure function 
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may vary depending on the problem. As a first step to parameterizing the tropical cyclone 

ABL, we use a linear relationship of the form 

«•«- r'«:f^ (2-25) 

wherein Zb is the fixed top of the ABL. Ooyama (1999) demonstrated that, although this 

flux does not produce an Ekman-like spiral nor a typical ABL sounding, it does provide 

the essential ABL dynamics needed to simulate tropical cyclones (i.e., the frictional inflow 

of mass toward low pressure and the flux of mass, momentum, and energy to and from the 

surface). 

Just above the surface, the molecular flux in the viscous sublayer is typically assumed to 

represent a continuous extension of the turbulent flux in the surface layer (Haitiner and 

Williams, 1980). As a result, the flux at the top of the surface layer is given by the surface 

flux, which we represent using the bulk aerodynamic formula, 

Fx (za) = Fx (0) = -CXU (Xa ~ Xo), (2-26) 

wherein U = (u2 + u2)5 , Cx are the exchange coefficients, and subscripts o and 0 denote 

the values of x at the anemometer level and at the surface, respectively. 

2.2    Numerics: Discretization of Space and Time 

In the previous section, we developed a mathematical model of a moist, precipitating 

atmosphere. Each of the model predictive equations, (2.2)-(2.6), may be written in the 

succinct form 

-z- = F{u,ux,uxx,...), (2.27) 
at 
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wherein u now represents any one of the predictive variables and F is the forcing provided 

by the primitive equations. In this section, we derive and evaluate numerical techniques to 

solve this equation. First, to solve the right side, we review Ooyama's (1984, 1987; DeMaria 

et al., 1992) spatial discretization scheme, the Spectral Application of Finite Element 

Representation (SAFER) method, including a discussion of the method's advantages and 

disadvantages. Second, to solve the left side, we discuss the temporal discretization scheme, 

which is based on the semi-implicit method (Ooyama, 1997) with leapfrog time differencing. 

2.2.1    Spatial Discretization: The SAFER Method 

One physically fascinating, yet numerically frustrating, aspect of tropical cyclone dynamics 

is the wide range of dynamically interacting spatial scales. As pointed out by Ooyama 

(1984), the radius of deformation may vary by several orders of magnitude from the storm 

center (~ 5-10 km) to the surrounding environment (~ 1000 km). Consequently, near 

the storm center, gravity-inertia waves with wavelengths similar to the local radius of 

deformation affect the quasi-balanced dynamics, whereas in the surrounding environment, 

these same waves would be dynamically invisible. Furthermore, the tropical cyclone itself 

is relatively small compared to the large-scale environment through which it moves. Thus, 

to accurately yet efficiently simulate the essential dynamics of tropical cyclones, we need a 

spatial discretization scheme with flexible boundary conditions that permits grid nesting 

and limited area domains. 

In response to this need, Ooyama developed a unique spatial discretization scheme, the 

SAFER method, for objective analysis (Ooyama, 1987) and hurricane prediction (Ooyama, 

1984; DeMaria et al., 1992). The approach has benefits inherent in both finite (grid point) 

and continuous (spectral) spatial discretization schemes. The SAFER method is similar 

to a harmonic spectral method in that the finite elements are differentiable; thus, the 

dispersion errors are much smaller than those produced by finite-difference approxima- 

tions. Likewise, the SAFER method is similar to a grid-point method in that the finite 

elements are defined locally; thus, many different boundary conditions are possible, unlike 
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pure harmonic spectral methods, which require periodic boundary conditions. In this sec- 

tion, we derive the basic concepts of the SAFER method, and discuss its advantages and 

disadvantages. 

2.2.1.1    General Spectral Representation and Transforms 

Transform from Spectral to Physical Space (sJ ->■ Tl1): To understand the basic concepts 

of the SAFER method, we first discuss spectral methods in general, as applied to a scalar 

field in one dimension, ft1. Consider an arbitrary, continuous function ü(x,t) defined 

within the closed domain V C 1Z1 with x G V. An approximate, continuous representation 

of n is given by the truncated series expansion 

M 

Ü {x, t)=u (x, t)+e (x, t) = £ am (*) 4>m {x) + e (x, t) , (2.28) 
m=0 

wherein M is the truncation limit, or the degrees of representational freedom, and e (x,t) 

is the truncation error. The functions <t>m (x) € Cj, m = 0,1,..., M in (2.28) form a set of 

linearly independent basis functions that have time-dependent amplitudes am {t) and are 

continuously differentiable to the continuity limit J. If we neglect e, (2.28) reduces to the 

transformation from spectral space SJ to physical space ft1, 

M 

u(x,t)= £am(i)<M*), (2-29) 
m=0 

wherein u is an approximate representation of ü when e ^ 0. We may think of u as the 

projection of ü into SJ. Only when ü is a member of the family of functions represented in 

SJ will u = ü. To represent u using (2.29) requires knowing each am, which are obtained 

using a reverse transformation from physical to spectral space. 

Transform from Physical to Spectral Space (ll1 -> sA: The transformation from physical 

to spectral space is found by minimizing the error between ü and u using the least-squares 
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approximation. Following DeMaria et al. (1992), we let ||/ (x)|| = (/,/)* be the norm of 

/ (x) and 

(f,g)= [ f(x)g(x)dx, (2.30) 
Jv 

be the definition of the inner product between two arbitrary, well-behaved functions / (x) 

and g (x). The error between ü and u is then given by 

E=\\u-u\\. (2.31) 

Before minimizing the error, we must make a simple yet extremely useful modification to 

(2.31). Up to this point in the derivation, we have assumed that ü is a continuous function 

of x. In most numerical models, however, we do not know ü analytically for all x but only 

discretely at individual grid points X{. Under these conditions, the minimization of (2.31) 

yields zero errors at x = x\ and unacceptably large errors for x ^ Xj. To both minimize 

the error and smooth the solution (i.e., minimize the error between the points), a penalty 

term or derivative constraint, 

Ep = yfa{x\ 
dPu 
dxi 

(2.32) 

is added to (2.31), yielding the total error 

Et = (E2 + El)\ (2.33) 

wherein j — 1,2, or 3 is the order of the derivative constraint, a(x) = (lc(x)/2n) 3, 

and lc(x) is the cutoff wavelength. If short-wavelength (relative to lc), large-amplitude 

oscillations are present, the penalty term is large; thus, these oscillations will be removed, 
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or filtered, to minimize Et. The derivative constraint thus acts as a low-pass filter, with 

the filter characteristics controlled by careful selection of j and lc. A detailed analysis of 

the spectral characteristics of the derivative constraint is presented in appendix F. 

Using (2.33) instead of (2.31) for the error, we seek am such that Et is minimized. Sub- 

stituting (2.29) into (2.31) and (2.32) for u, we find the minimum Et for each am by 

solving dEt/dam = 0 for m = 0,1,2,..., M. This minimization yields the desired reverse 

transform from 1Z1 to SJ, 

a=(p + Q(j))_1b, (2.34) 

wherein a = {am : m = 0,1,..., M}   , 

b = {bm = (ü(x),<j>m(x)): m = 0,l,...,M}T, (2.35) 

P = {Pmm> = {<t>m {x), <£m' (x)) :  m, m' = 0,1,..., M) , (2.36) 

Q(i) = {£L = («(*) ^ (*). 4$ (*)) : m, m' = 0,1,..., M} , (2.37) 

and <pm (x) = dP^m/dxK 

Equation (2.34) represents a linear system of equations we solve for am. Notice that, in 

general, this solution takes two steps. First, the function ü (x) is transformed into SJ by 

solving (2.35) for b. Second, if the basis functions are not orthogonal, we solve (2.34) for a. 

If the basis functions are orthogonal, the solution takes one step, i.e., a = b, since P + Q 

is equal to the identity matrix. 
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The approach outlined above is extendible to two and three dimensions. For example, using 

a two-dimensional, rectangular domain, V C V? with x, y G X>, the transform equations 

(2.29) and (2.34) may be written in the following bilinear form: 

M     N 

u {x, y,t)= J212 a™ (f) 4m (z) <f>n (y), (2-38) 
J7l=0 71=0 

a = { (Pm + Q#) ® (Pn + QÜ)) }_1 b, (2.39) 

wherein M and AT are the degrees of representational freedom in the x and y directions, 

a = {amn : m = 0,1,..., M; n = 0,1,..., N} are the time dependent amplitudes for the 

basis functions <pm (x), m — 0,1,..., M and <pn (y), n = 0,1,..., N, and 

h = {bmn = {ü{x),<t>m{x)<j>n{y)):  m = 0,l,...,M; n = 0,1,... ,iV}T . (2.40) 

Pi and QJ
J)
 are defined as in (2.36) and (2.37) for i = m,n. 

2.2.1.2   Specific Spectral Representation and Transforms using the Cubic B-Spline 

The specific choice of basis function depends on the problem being solved. For most atmo- 

spheric problems, Ooyama (1984) suggested that the basis function must 1) be second order 

differentiable (i.e., to the highest order of differentiability in the prognostic equations), 2) 

have spatially uniform resolution, 3) be computationally efficient, and 4) have flexible 

boundary conditions. Ooyama (1984) compared various basis functions (e.g., harmonic 

functions, nth-degree polynomials, Legendre orthogonal polynomials, Chebyshev polyno- 

mials, linear and cubic splines) against these requirements and chose the finite elements of 

Ci continuity. 
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Figure 2.3: The cubic B-spline tf (x) and its first three derivatives. Note that the second 
derivative has been scaled by 1/2 and the third derivative by 1/4. 

Specifically, Ooyama (1984) chose the cubic B-spline (DeBoor, 1972; Lyche and Schumaker, 

1973) (hereafter referred to as the spline) as the finite element. The spline is defined by 

*(OH 
0 

i(2-KI)3 

I  |(2-KI)3-(1 

if   2<|e|, 
if   1 < |£l < 2 

Kl)3   if   0<K|<1, 

(2.41) 

wherein £ is a nondimensional coordinate. As illustrated in figure 2.3, the spline is symmet- 

ric about the origin (2,0) and is composed of four equal-width cubic-polynomial segments. 

Outside two intervals on either side of the origin, the spline vanishes. While the spline is 

not analytic, it is continuous through the second derivative and piecewise continuous for 

the third derivative. 
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Figure 2.4: Distribution of the a) open bases ipm (x) and b) closed bases <f>m (x) for the 
boundary condition R1T2 (see appendix D). 

We now use the spline as a local basis function. At each node xm we center a spline, letting 

£ = (x - xm) /Ax, such that 

*■<*>-« I'^rO- (2.42) 

wherein xm = xo + mAx, m = -1,0,..., M +1, m is the node number within and outside 

the closed domain V = [XQ,XM], AX = (XM - xo) /M is the constant nodal spacing, and 

M is the number of nodal intervals. Using linear combinations of ipm, as in (2.29), ü is 

then approximated by 

M+l 

u(x,t) =    Y^   am {t) i>m {x) 
m=—1 

(2.43) 

wherein am is now the amplitude of the spline centered at xm. Figure 2.4a illustrates the 

location of the splines at selected xm. 



37 

Notice that additional splines are located at auxiliary nodes one interval outside the do- 

main at x-i and XM+I- Since these auxiliary splines have nonzero contribution inside the 

domain, they are necessary to represent ü, as (2.43) demonstrates; however, any repre- 

sentation of ü outside the domain by these splines is an artifact of the formulation, since 

ü is not defined outside V. Ooyama (1984) refers to this as the open form of the rep- 

resentation. Using this form, it is impossible to calculate am using (2.34), since bm for 

m = -1 and M + 1 is undefined. 

A closed form is needed to eliminate the auxiliary splines. Given appropriate lateral 

boundary conditions on u, we fold, or incorporate, the auxiliary splines into the definition 

of the overlapping splines located within the domain (see appendix D for details). An 

example of the folded splines, symbolized by <j>m (re), is shown in figure 2.4b. Using </>m as 

the basis function, the transform pair for the SAFER method is now given by (2.29) and 

(2.34) in one dimension, or (2.38) and (2.39) in two dimensions. 

2.2.1.3   Nesting using the SAFER Method 

One of the principle advantages of the SAFER method is its simple yet extremely accurate 

two-way nesting capability. Ideally, we want the interface between grids to be transparent. 

The SAFER method accomplishes this through the flexibility of its boundary conditions 

and the filtering capability of the derivative constraint. For a more detailed discussion of 

this topic, see the papers by DeMaria et al. (1992) and Ooyama (1997). 

Coarse-to-Fine: For coarse-to-fine grid communication, we simply assume that the physical 

space solution and its first two derivatives are continuous across the interface. Consider, 

for example, the left interface (denoted by subscript L) of the nest configuration illustrated 

in figure 2.5. The physical space solution is represented on the two grids by (2.43) with 

spectral amplitudes a and A for the fine and coarse grids, respectively. Assuming that the 

function and its first two derivatives are equal at the interface, we obtain the boundary 

amplitudes on the fine grid by solving a simple 3x3 matrix: 
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Figure 2.5: Nesting schema of two grids, a fine grid (a's) with M nodes and a coarse grid 
(A's) with N nodes, for which the nodal spacing differs by a factor of 2. Both interfaces 
are identified by the vertical dashed line. Subscripts L and R distinguish the left and right 
interfaces, respectively. The large filled circles denote the primary nodes and the x 's the 
auxiliary nodes. The small filled circles denote gaps in the depiction of the grids [adapted 
from DeMaria et al. (1992)]. 
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(2.44) 

A similar expression is then solved for the right interface, with the remaining amplitudes 

on the fine grid calculated using the least-squares transform. See appendix D for a detailed 

derivation of this expression. 

Fine-to-Coarse: Fine-to-coarse grid communication is more complicated, since the smallest 

resolved waves on the fine grid are unrepresentable on the coarse grid. Intuitively, one 

might consider simply projecting the solution from the fine grid onto the coarse grid; 

however, the spectral truncation of the unresolvable components of the fine grid solution 

results in undesirable Gibbs oscillations. Instead, we project only that portion of the 

solution needed for waves near the interface to propagate from the fine to the coarse grid. 

In practice, the coarse grid need only extend one coarse-grid nodal interval into the fine 

grid. Any unresolvable waves are filtered in the region of grid overlap using the derivative 

constraint. By increasing the cutoff wavelength of the derivative constraint from 2 to 4, we 

filter longer, non-transmissible waves, thus preventing them from reaching the interface. 

2.2.1-4    Numerical Application of the SAFER Method 

The first step in the transformation to spectral space involves the solution of (2.35), (2.36), 

and (2.37). We solve the inner product in each using Gaussian quadrature to approximate 
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the integrals. Experience has shown reasonable convergence with as few as two quadrature 

points per nodal interval. Clearly, the computation of P and Q^ is greater than that of 

b since the integral in (2.36) and (2.37) is solved for each m and m', while the integral in 

(2.35) is solved for each m only; however, if the grids are not changing with time, this cost 

is incurred only once at the start of the simulation. 

In the next step of the transformation to spectral space, we solve (2.34). Note that, 

due to the local definition of the spline, both P and Q-7 are banded matrices with three 

non-zero elements on either side of the diagonal. Thus, both are 7-banded symmetric 

matrices. We could solve the transformation for a by inverting fP + Q^J as shown 

in (2.34); however, by inverting this matrix, we would convert a sparse matrix to a full 

matrix. Taking advantage of the sparseness of the matrices, we instead solve the linear 

system of equations using Gaussian elimination. While the inversion would require O (M2) 

calculations, the elimination requires only O(M). 

In the reverse transformation to physical space, we solve (2.29). Again, due to the local 

definition of the spline, the solution of this transformation requires the sum of three to 

four overlapping basis functions. Compare this with a harmonic method, which requires 

the sum of all M basis functions. 

2.2.1.5   Advantages and Disadvantages of the SAFER Method 

Since the SAFER method is not widely used, it is essential that we discuss its advantages 

and disadvantages compared with more commonly used methods. We begin by discussing 

the representation and dispersion errors associated with the spline approximation. These 

errors are compared to the second-order, centered, finite-difference method to show the 

improved dispersion and nesting characteristics of the SAFER method. Finally, we address 

the criticism that such a method is computationally more expensive than other approaches. 

Representation Errors: Generally, any finite representation of an arbitrary function, ü(x), 

whether by grid-point or spectral methods, will be inexact due to representational errors. 
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In other words, the finite representation only approximates ü (x). For example, consider a 

single harmonic mode, 

«<«>-»* («]■£)■ <2-45> 

wherein lAx is the wavelength. Of course, a harmonic spectral method that includes this 

wavelength represents the function exactly. In contrast, grid-point methods represent the 

function approximately by 

tt(jAz)=exp(i^), (2.46) 

wherein Ax is now the grid spacing and j is the grid point. If I is large, the representation 

error will be small, because the wave is represented by many grid points. However, if / = 2, 

the representational error is a maximum. In this case, the sine wave is not represented at 

all, and the cosine wave is represented its extreme values only. 

Similar representation errors occur with the SAFER method. If we again input a sin- 

gle harmonic mode of the form (2.45), transforming to and from SJ with no derivative 

constraint, we find that the output solution has the form 

u (x) = r0 (I) exp (ig|) + rp (V) exp (-*Jg) , (2.47) 

wherein r0 (I) is the reduced amplitude of the input wave and rv (l
1) is the amplitude 

of the representational error, which has wavelength I'Ax. From figure 2.6, we see that 

/' = 1/(1- 1) or, more simply, k' = 1 - k, wherein k and k' are the wavenumbers of the 

input wave and representational error, respectively. Ooyama (personal notes) terms the 

representational error the "parasite" wave. As an example, figure 2.7 illustrates the spline 
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Figure 2.6: Graphical representation of the relationship between the wavenumbers k and 
k', or wavelengths I and l'. Notice that a wave with wavelength / is always resolved, 
whereas a wave with wavelength I' is never resolved. Both k and I are defined in units of 
Aa; (adapted from Ooyama's personal notes). 
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Figure 2.7: Plots of an a) input 4Ax sine wave (solid) and its spline representation (large 
dash), and b) the representational error or "parasite" wave. Included in a) are the individual 
splines (small dashed) used to obtain the spline representation (redrafted from Ooyama's 

personal notes). 
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Ooyama's personal notes). 

solution (dashed) for an input wave (solid) with I = 4. The resulting parasite wave with 

/' = 4/3 is also shown. 

By performing the same analysis for all wavelengths, we obtain the amplitudes r0 and 

rv for all I, as shown in figure 2.8. Similar to the grid-point method, we see that the 

representation error is small (i.e., r0 -»■ 1 and rp -)• 0) for large I; however, when / = 2, 

the representation error is a maximum (i.e., r0 = rp = 1/2). Again, the sine wave is not 

represented at all, and the cosine wave is represented by its extreme values only. 

Notice that for all input wavelengths, the parasite wave is not resolvable, as shown in 

figure 2.6; as a result, it is aliased onto the resolved waves. To prevent aliasing, the 

parasite wave must be filtered. Recall that the derivative constraint acts as a low-pass 

filter; thus, we may use it to filter the parasite wave. Including the derivative constraint 

in the transformation, the output solution now has the form 

u (x) = ra (I) r0 (I) exp (ig|) + ra (/') rp (/') exp (~^) , (2-48) 

wherein ra is the response function of the derivative constraint, which is derived in ap- 

pendix F. As illustrated in figure 2.9, for a given wavelength (I), the derivative constraint 
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(i.e., j > 0 and lc > 0) damps the amplitude of the parasite wave (rp), though not without 

cost, since it also damps the amplitude of the input wave (r0). For the best results, we 

choose j — 3 and lc = 2. 

Dispersion Errors: Computational dispersion of advected waves has long been recognized 

as a significant source of error in any numerical model that approximates spatial derivatives 

using finite-differences (Browning et al., 1973). Less recognized are the dispersion errors 

associated with spatial derivatives approximated using the SAFER method. To better 

understand these errors, we compare the dispersion characteristics of the SAFER method 

with those of the more commonly used second-order, centered, finite-difference method as 

applied to the one-dimensional, linear advection equation 

*+«■£-"• <™> 

with constant advective phase speed, cs. The exact solution to this expression is given 

by (2.45) with dispersion relation c = cs. In appendix E, we further derive the dispersion 

equations for the finite-difference and SAFER approximations to (2.49), with equations 

(2.46) and (2.47) as the respective input solutions. 

This comparison reveals that use of the SAFER method significantly reduces the computa- 

tional dispersion. To show this, the dispersion equations, (E.6) and (E.10), are compared 

figure 2.10 for the SAFER and finite-difference methods, respectively. For a Courant 

number /i = csAt/Ax = 0.4 and wavelengths / = 4,8, and 16, the computational phase 

speeds, c, of the finite-difference approximation are 0.65, 0.91, and 0.98, respectively, of 

the true phase speed, cs. Thus, waves with / < 8 have dispersion errors of 10% or greater. 

Contrast this with the SAFER method, which does not attain similar errors until / < 4. 

In theory, the dispersion errors of the finite-difference approximation could be reduced by 

using higher-order methods; however, in practice, these methods are avoided due to their 

mathematical complexity and computational cost. 
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Figure 2.10: Normalized phase speed, c/cs, as a function of wavelength, I (in units of 
Arc), for the SAFER (solid) and second-order, centered finite-difference (dashed) methods 
applied to the one-dimensional advection equation, with constant phase speed, cs. The 
numbers along each curve represent the Courant number, /i = csAt/Ax. Finally, the 
dotted lines identify the wavelengths with 10% dispersion errors (redrafted from Ooyama's 
personal notes). 
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Improved Nesting: The decreased dispersion errors of the SAFER method also improve its 

nesting capabilities relative to the second-order, centered, finite-difference method. Ideally, 

an 8Axf (If = 8) wave on a fine grid with grid spacing Axf should become a 4Aa;c (lc = 4) 

wave as it propagates into a coarse grid with grid spacing Axc = 2Axf, however, in reality, 

this may not occur due to dispersion errors. As the 8Axf wave crosses the interface, its 

phase speed decreases, i.e., 

cc (lc) < cf (If). (2.50) 

Keep in mind that the frequency of a wave, u> = c/lAx, is set by the forcing and should 

be identical in both grids, i.e., 

cc (U = cf (If) ^51j 
lc If 

Prom (2.50) and (2.51), we find that the wavelength must also decrease as the wave 

crosses the interface. As a result, the wave is actually unresolvable (i.e., lc < 2) and 

non-transmissible; thus, it reflects back into the fine grid. 

This problem is much worse for the second-order, centered, finite-difference method than 

for the SAFER method. Figures 2.11a and b compare the dispersion equations, (E.7) and 

(E.12), expressed in terms of frequency, u, for the SAFER and finite-difference methods, 

respectively. Also shown in each figure is the exact solution of (2.49), which has no disper- 

sion (i.e., u) = cs/l with cs = 1). According to figure 2.11, using centered, finite-differences, 

waves smaller than 11.6Aa; on the fine grid are not transmitted to the coarse grid. Using 

the SAFER method, in contrast, waves as small as 4.8Ax are transmitted. 

Computational Efficiency: To be useful, any numerical technique must not only be ac- 

curate, but computationally efficient. Ooyama (1984) sacrificed orthogonality of basis 

functions for flexibility in choosing boundary conditions.  Although this complicates the 
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Figure 2.11: Frequency, w, as a function of wavelength, / (in units of Ax), for the second- 
order, centered finite-difference (top) and SAFER (bottom) methods applied to the one- 
dimensional, linear advection equation, with constant phase speed, cs = 1. The solid 
curve in each represents the exact or "perfect" solution, u = cs/l, while the other curves 
represent the approximate solution on the fine (Axf, dashed) and coarse (Arrc = 2Ax/, 
dotted) grids (redrafted from Ooyama's personal notes). 
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transform from physical to spectral space by adding an additional step, the computational 

cost is mitigated by the local definition of the spline. According to Ooyama (1984), the 

calculation of (2.34) is relatively inexpensive in comparison to the calculation of (2.35) and 

(2.29), both of which are unavoidable in any spectral method, whether orthogonal or not. 

Furthermore, since the calculations of (2.35) and (2.29) require the sum over a limited do- 

main in both physical and spectral space, respectively, we could argue that the transforms 

of the SAFER method are more efficient than a harmonic method, which requires the 

sum over the entire domain in both physical and spectral space. Finally, Ooyama (1984) 

stresses that a numerical technique should not only be judged by the computational cost 

per degree of freedom but also by the quality of information per degree of freedom. As 

demonstrated previously, the SAFER method produces a higher quality of information by 

decreasing the dispersion errors. 

2.2.2    Temporal Discretization: Leapfrog and Semi-Implicit Methods 

With the spatial discretization scheme defined, we next choose a temporal discretization 

scheme and apply it to (2.27). However, we do not discretize this equation directly; instead, 

we partially transform it by using (2.35) to obtain 

-^- = (F (u, ux, uxx,...), <f>m {x)). (2.52) 

The time derivative is then approximated using a second-order centered or leapfrog time 

difference, i.e., 

C1 = C1 + 2Ai (Fn (u, ux, uxx,...), 4>m (x)), (2.53) 

wherein At is the time step and n is the number of time steps.  In this case, a forward 

step must be used for the first time step. Using bn+1 = {b^1, m = 0,1,..., M) obtained 
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from (2.53), the physical to spectral space transform is then completed by solving (2.34) 

for an+1. Finally, the future state of the atmosphere is found by solving (2.29). See the 

paper by DeMaria et al. (1992) for a detailed discussion of the solution of (2.52) using the 

nested grids. 

The time step used to solve (2.53) must be small enough to satisfy the numerical constraints 

on computational stability. The Courant-Freidrichs-Levy (CFL) condition for computa- 

tional stability requires that 

^,^<I (2.54) 
Aa;' Az      n' 

wherein c is the phase speed of the fastest propagating wave contained in the model physics. 

For a compressible atmosphere, c is the speed of sound, cs = 331.4 m s_1 at 0°C. Notice 

that this is a more restrictive constraint than the customary CFL condition of unity. The 

inverse 7r results from the spectral, rather than finite difference, approximation to the 

spatial derivatives. Using (2.54), we find that, for a grid spacing of 500 m, the time step 

must be 0.5 s or less. Given our current computational capabilities, this is unacceptably 

small. 

There are essentially three ways to eliminate this problem: 1) we can filter the sound waves, 

either numerically or physically, by altering the predictive equations (e.g., the anelastic 

equations); 2) we can separate the sound wave dynamics and solve them explicitly using 

a smaller time step, as in the time-splitting method (Skamarock and Klemp, 1992); or 3) 

we can slow the sound waves down such that they become stable for longer time steps, 

as in the semi-implicit method (Robert, 1969). Of these three methods, the third is the 

most appealing. The first choice is unacceptable because it would involve unnecessary 

approximations to the physics. The second choice, while acceptable, is not as easily applied 

to the SAFER method as the third choice. Using the semi-implicit method, we gain a five- 

fold increase in the time step on the finest grid (i.e., At = 2.5 s). For more details on this 

approach, see Ooyama (1997, 2001). 
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Finally, an Asselin (1972) filter is applied during the centered time steps. According to 

Ooyama (2001), this filter is not used to damp the computational mode of the leapfrog 

scheme, but rather to control an instability in the moisture field. In this instability, which 

occurs in regions where the atmosphere is marginally saturated, water may condense at 

one time step and immediately evaporate at the next. Occasionally, the amplitude of this 

oscillation grows due to a dynamic feedback. Applying the Asselin filter with a coefficient 

of 0.3 eliminates this instability. 

2.3    Pragmatics: Accommodation of Physics to Numerics 

As the physics are merged with the numerics, we must make several changes to the model 

predictive equations, (2.2)-(2.6), in order to maintain the integrity of the physics and to 

maximize the model accuracy. In summary, the modified predictive equations in cylindrical 

coordinates are given by 

dt dr 

/du     dw     u\ 
\dr      dz      rj' 

(2.55) 
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du               du     ( u. 
-u— [w + 

dt "dr      V '  1 + M    ) dz + \J + rJ        1 + u \ 8r dr) 

^ (^ + <^a§) + a.^u, (2.58) 
1 + , 

du —|-(-^"')i-(^;)-i^(^+*-i)+**-"^ 

dw _      dw 
~dt=~u~dr~ « + I^)£-I^(£+*5+4+'')+*'"<MO> 

0t 
r = -"*-^ - & (^SrW)-ursrWrz + --Fs {— + *a-j + a.*.* . (2.61) 

We explain the modifications in detail below. 

Axisymmetry: Most importantly, we reduce the model equations to their two-dimensional, 

axisymmetric form. Of course, we would prefer to solve the three-dimensional equations; 

however, the current SAFER numerics have only been developed for two-dimensions. As 

a result of this limitation, we first test the two-dimensional model by investigating the 

axisymmetric dynamics of tropical cyclones. In the future, when the three-dimensional 

SAFER numerics are complete, we will use the results of these investigations as a basis for 

comparison. 

Derivatives of Transformed Variables: In addition, we write the equations from flux to 

advective form. For our numerical discretization, we chose a spectral technique to more 

accurately compute derivatives. These derivatives are calculated by differentiating (2.43). 

Since we only have spectral amplitudes for the predictive variables, we rewrite the equations 

in advective form. For the derivatives of pressure, we perform a separate spectral transform 
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to compute the necessary spectral amplitudes. For the remaining derivatives in (2.55)- 

(2.61), which do not involve predictive variables, we solve (2.35) by parts with a prescribed 

lower boundary condition. 

Normalization and Perturbations: Most noticeably, we redefine our predictive variables to 

increase the numerical accuracy of the model. First, we normalize the mass and entropy 

variables by the dry air mass to obtain the normalized dry air mass [£ = \n(pa/pao)}, 

airborne water mixing ratio (pm = pm/pa), precipitation mixing ratio (pr = pr/pa), total 

water mixing ratio (p = pw/Pa), and dry air specific total entropy (s = a/pa), with 

pao being the reference value of the dry air density. We also normalize the pressure to 

obtain ir = p/pa- Second, we take the deviation of these normalized variables from a 

horizontally homogeneous, resting basic state (denoted by a caret), i.e., £' = ln(pa/pao) - 

In ißa (z) /pa0) = £ - i (z), p'r = pr, A*' = V ~ Am (*) , and s' = s - s (z). Notice that there 

is no basic state for the precipitation mixing ratio. We further require that the basic state 

be hydrostatically balanced (i.e., gp + dp/dz = 0, wherein p(z) = pa + Pm and p(z) are 

the basic state total mass density and total pressure, respectively). Finally, using equation 

(2.26), the surface fluxes for the modified variables are given by 

Fu   =   -CDUu, (2.62) 

Fv   =   -CDUv, (2.63) 

Fß   =   -CHU (pVa - p*J , (2.64) 

Fs   =   -CHU 
(^^)+SvoißVa~ß*J 

(2.65) 

wherein CD and CH are the drag and entropy/mass exchange coefficients, respectively; 

p*v is the saturation water vapor mixing ratio; 6m — T(p0/p)K is the moist potential 

temperature; K = R/cp] cp and R are the mass-weighted specific heat at constant pressure 

and gas constant, respectively; and sv is the water vapor entropy. 

Moss Conservation: Notice that we also have replaced the mass continuity equation for 

/im, (2.3), with the mass continuity equation for p, (2.56).   While we can write mass 
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conservation equations for pa, pm, pr, pw, and p, any three of these equations could be 

used to predict the entire mass distribution, keeping in mind that pv and pc are diagnosed. 

In practical application, however, we have found that the mass continuity equation for p 

provides more realistic results. 

Mixing Ratio Transform: An inevitable problem with any spectral model is the appearance 

of negative values associated with positive definite quantities. The truncation of critical 

spectral components produces Gibbs oscillations in the physical representation. For exam- 

ple, a limited set of basis functions is unable to represent the sharp gradient in liquid water 

at the edge of a cloud. As a result, Gibbs oscillations in the cloud water mixing ratio lead 

to negative values just outside the cloud edge. 

There are four common approaches to partially correct this problem. First, we could re- 

distribute water mass from adjacent regions; however, this is extremely arbitrary. Second, 

we could use a sign-preserving, finite-difference advection scheme (Smolarkiewicz, 1991), 

but this would require two different spatial-discretization schemes in one model, which is 

technically undesirable. Third, we could use the upstream difference scheme, which pre- 

vents the generation of negative values; however, this scheme is highly dispersive (Haitiner 

and Williams, 1980). Last, we could transform the water variable to a positive definite 

form. The last option is the best for our purposes, since it focuses directly on the problem 

without altering any other part of the numerics. 

The transform proposed by Ooyama (2001) uses one branch of a hyperbola to transform 

p to v, the hyper-transformed mixing ratio. Specifically, the biased hyperbolic transform 

pair is given by 

i/ = 0.5 (/* + Mo) ° 
(A* + Mo) 

(2.66) 

J   (^2 + Mo)2 +^-Mo,   if   ">0, (2.67) 
[ 0, if   v < 0, 
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wherein /io is a constant bias of 1CT17. The primary advantage of this approach is that 

the transform only alters the smallest values of /x (i.e., /i ~ /io), which are relatively 

insignificant. For large values of /x (i.e., /x > /xo), the transform is nearly linear such that 

v ~ 0.5/x. Thus, the transform ensures that \i is either zero or positive for extremely small 

values and essentially unaltered for larger values. Note that the additional terms appearing 

in (2.56) and (2.57) result from the transformation of the derivatives of /x and /xr. Details 

of this transformation are explained by Ooyama (2001). 

Homogeneous Lower Boundary Conditions: Since the SAFER numerics do not currently 

allow for inhomogeneous lateral boundary conditions, we must alter the vertical momentum 

equation to account for nonzero w at the surface. To prevent the accumulation of liquid 

water along the lower boundary, we must allow W ^ 0 at the surface so that precipitation 

passes through the lower boundary. According to (2.1), this indicates that w ^ 0 at 

the surface. The easiest solution is simply to neglect the W contribution to w, leaving 

w as the predictive variable. This is a reasonable approximation. If pr/p « 0.001 and 

W ~ w, then from the definition of w we see that the term involving W is three orders of 

magnitude smaller than w. To be more physically consistent, however, we assume that the 

precipitation gradually accelerates such that DrW/Dt « 0, which produces the same result 

(Ooyama, 2001). See appendix B for details. This approximation is reasonable except near 

the melting level, where slowly falling snow and graupel particles rapidly accelerate after 

melting. 

Homogeneous Upper Boundary Condition: Similarly, the homogeneous boundary condition 

at the top boundary requires that w vanish (i.e., a rigid lid). To minimize the adverse effects 

of vertically propagating gravity waves that reflect off this lid, we add a sponge layer, or 

Rayleigh damping layer, of the form 

Dx = aa4>s(z)(x-X), (2-68) 

for x — u,v,w, or s, wherein 
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*• <*) = (?, *     tf   z<Zs: (2-69) 

is a vertical structure function.  The depth of the damping layer extends from zs to the 

model top, zt, and its strength is set by the coefficient as. 



Chapter 3 

MOIST POTENTIAL VORTICITY DERIVATION 

Every novel idea in science passes through three stages. First people say it isn't 
true. Then they say it's true, but not important. And finally they say it's true 
and important, but not new. 

Anonymous 

In the previous chapter, we developed a mathematical model describing the evolution of 

a moist precipitating atmosphere, which included conservation equations for the mass, 

momentum, and entropy. Using these equations, we now derive the model's potential 

vorticity (PV) conservation equation. We begin this derivation by generalizing Ertel's 

(1942a) PV equation to a moist, precipitating atmosphere (section 3.1). As in Ertel's 

original formulation, our PV equation involves an arbitrary scalar field ip. Next, we show 

that the generalized moist PV has an invertibility principle and satisfies the impermeability 

theorem. With the complete PV principle developed, we then choose a specific expression 

for if) (section 3.2). Lastly, we present the PV equation in its axisymmetric form, including 

the approximation of section 2.3 (section 3.3). 

3.1    Generalized Potential Vorticity Principle 

3.1.1    Moist Potential Vorticity 

Combining basic vector identities with the conservation equations for the total mass and 

momentum, we derive the generalized moist PV equation in terms of the arbitrary scalar 
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field ip as follows. Taking the difference of the vector identities V • [Vip x (du/dt)] = 

(du/dt)-{V x VVO-ViHV x (dn/dt)] and V-[(0^/0i) fl = C-V {fy/dt)+ (&/>/&) V-C, 

for which £ = 2fi + V x u is the absolute vorticity, and recognizing that V x V^ = 0 and 

V • C = 0, we obtain 

d_ 
at 

(C-v^) + v.(v^x^-cf)=o. (3-1) 

Defining ip = Dip/Dt, where D/Dt = d/dt + u • V is the material derivative following u, 

and using the vector identity C (u • WO = u (C • W) + V^x(Cxu),we rewrite (3.1) as 

d_ 

at (C-W) + v = C-W, (3.2) 

which, after substituting the vector identity V-[u (C • W)] = u-V (C • W) + (C ■ W) Vu, 

expands to 

D_ 
Dt 

(C • WO + (C • W) v • u + v Wxg + Cxu) = C-W- (3.3) 

Despite our use of symbols with implied meanings (i.e., u and £), this result was derived 

using very little physics; instead, purely mathematical arguments were used. 

We introduce the physics by defining a particular u, and then substituting an appropriate 

mass conservation equation for V-u and momentum conservation equation for du/dt+^xu. 

For example, letting u be the dry air velocity, we substitute the continuity equation for 

dry air (2.2) and the rotational form of the momentum equation (B.17) into (3.3) to obtain 

D_ ( 1 
Dt 

(±£ • vV) = 4 (Vft x Vpa) • W + —C • W + — (V x F) • W, (3.4) 
\Pa )        P% Pa Pa 
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wherein F represents friction produced by the turbulent diffusion of momentum. If we 

let ip = 0(pa,pa), where 6 is the potential temperature, and assume that the flow is 

adiabatic (i.e., 0 = 0) and frictionless (i.e., F = 0), equation (3.4) reduces to the material 

conservation relation 

£-* ™ 
where 

P=-C-V0, (3.6) 
Pa 

is Ertel's PV for a dry atmosphere. 

To derive a more general form of PV that is applicable to a moist atmosphere, we must 

include the additional physics associated with water. For instance, similar to the approach 

used to derive (3.4), we let u be the mass-weighted mean velocity (2.1), and substitute the 

continuity (B.12) and momentum (B.15) equations for the total mass into (3.3), to obtain 

the PV equation for a moist, precipitating atmosphere, 

-£■ (-C -V1>)=\ (VP x Vp) • VV + -C • V^ + - (V x F) • W, (3.7) 
Dt \p )     p6 p P 

wherein F now includes not only friction, but also sources and sinks of momentum due to 

changes in precipitation mass [see (B.16)]; D/Dt = d/dt + ü • V is the material derivative 

following Ü; and ip = Dip/Dt. Comparing equations (3.4) and (3.7), we see that pa, pa, u, 

C, V>, and D/Dt are replaced by p, p, ü, C, ip, and D/Dt, respectively. Clearly, the latter 

terms reduce to the former in the dry limit; thus, (3.7) reduces to (3.4). As a result, we 

can say that (3.7) represents a more general form of the PV conservation equation. 
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However, as with (3.5), we prefer that (3.7) be a material conservation relation. Unfor- 

tunately, in general, such a relation is not possible, since F ^ 0 even for frictionless flow 

due to precipitation. Furthermore, we may not be able to eliminate both (Vp x Vp) • Vip 

and C • V^> for a specific choice of tp. The solenoidal term, V^ ■ (Vp x Vp), in par- 

ticular, can be eliminated by simply requiring that ip = ip{p,p). When ip is of this 

form, V^ = (dtp/dp) p Vp + (dip/dp)p Vp, which implies that Vip • (Vp x Vp) = 01, since 

Vp • (Vp x Vp) = 0 and Vp • (Vp x Vp) = 0. Later, we consider the possibility of elimi- 

nating C • V^> by choosing a particular ip (p,p) satisfying tp = 0. With the solenoidal term 

removed, (3.7) reduces to 

^ = ic.V^+-(VxF)-Vi (3.8) 
Ut       p p 

where 

PTP = -C • W> (3-9) 
P 

is the generalized moist potential vorticity for the yet unspecified scalar field tp. 

3.1.2    Invertibility Principle 

The power of PV as a dynamic tool is ultimately in its invertibility. If the PV of a quasi- 

static balanced flow is known, amazingly, we can diagnose the fluid's complete mass and 

momentum fields. The elliptic equation or system of balanced equations with boundary 

conditions used to perform this diagnosis is termed the invertibility principle (Hoskins 

et al., 1985). 

'In a two-dimensional fluid, Vp, Vp, and VV> all lie in the same plane; therefore, Vip is always 
perpendicular to Vp x Vp such that V^ • (Vp x Vp) = 0, no matter what the choice of ip. 
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As a specific example of an invertibility principle for (3.9), we consider an axisymmetric 

fluid that is in gradient and hydrostatic balance. From equations (3.9) and (2.5), the PV 

and balanced conditions, respectively, for this fluid are given by 

Pi, = 
P L 

dv dip     (       d (rv) \ dip 

dzlh:+V+   rdr ) ~8z 
(3.10) 

g->K'* (3.11) 

dp 
-P9- (3.12) 

Assuming that P^ is known, this system consists of three equations and four unknowns 

(i.e., p, p, v, and ip). Since the system is not closed, we need an additional equation for 

tp as a function of p, p, v, or some combination of the three. Considering the previous 

section, we see that 

ip = ip{p,p) (3.13) 

not only eliminates the solenoidal term but closes the invertibility problem as well. 

However, there is a more fundamental reason for choosing ip = ip(p,p). Eliminating the 

solenoidal term is critical to separating the slow (i.e., balanced) and fast (i.e., inertia- 

gravity wave) manifold dynamics during inversion. To understand why, consider a dry 

barotropic atmosphere with frictionless adiabatic motions. According to Salmon (1992), 

this fluid has three material conservation equations for the PV. If the atmosphere is baro- 

clinic, the solenoidal term appears in each equation and destroys the material conservation. 

However, by choosing if) such that one of the solenoidal terms is eliminated, then one of 
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the material conservation relations is regained. The resulting relation is Ertel's PV equa- 

tion. The slow manifold dynamics are contained in this equation, while the fast manifold 

dynamics are contained in the remaining two equations. Therefore, we choose ip = ip (p,p) 

not out of convenience (i.e., simply to eliminate the solenoidal term and close the invert- 

ibility problem) but out of necessity (i.e., to guarantee invertibility of the slow manifold). 

If ip ^ ip(p,p), the inverted solution represents neither the slow nor fast manifold inde- 

pendently, but some combination, which is ultimately of little use. With ip (p,p) defined, 

we can then solve the invertibility problem for the slow manifold, given the necessary 

boundary conditions. 

Interestingly, this solution yields no information about the partition of mass into dry air 

and water in its various forms. For example, we are unable to partition p into pa, pv, pc, 

or pr\ nor are we able to partition p into pa or pv. The additional detail is dynamically 

unnecessary to solve the invertibility problem. To obtain these details, we must include 

other prognostic equations in addition to (3.8). 

3.1.3    Impermeability Theorem 

We next prove that the generalized moist PV also satisfies Haynes and Mclntyre's (1987; 

1990) impermeability theorem, which states that while surfaces of constant ip are permeable 

to mass, they are impermeable to "PV substance" (i.e., pP). Since pP = £ • Vi/> and since 

£ . VV> — V • (V>C) and VV> • (V x F) = V • (F x Vip), we begin this proof by rewriting 

(3.7) as 

^ + V-J = 0, (3.14) 

wherein J = upP - £ip - F x Vip is the total flux, consisting of the advective flux (pPu) 

and the nonadvective flux (—{ip - F x V^). 

By determining the components of this flux that are perpendicular and parallel to ip- 

surfaces, we show that there is no flux of pP across these surfaces.   To prove this, let 
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ü_L and £_L denote the components of ü and £ that are perpendicular to the ^-surface. 

The parallel components are then üj| = ü - üj_ and C\\ — C ~ C±- Since Vip/\Vip\ 

denotes a unit vector normal to the ^»-surface, the velocity and vorticity may be written 

as ü = ü|| + |VV>r2 (ü • Vip) Vtp and C = C|| + 1 VV|_2 (C • W) VV>- Using these last two 

relations, we rewrite J as 

J=lU|l + ^T V^ pP - U\\ + |3V^) V- - F x VV-. (3.15) 

Since the second term in the second parentheses involves £ • Vip, we may rewrite it as pP. 

This allows us to combine the second terms in the parentheses, so that (3.15) reduces to 

J = V±pP + ü||pP - C\\i - F x W, (3.16) 

where 

Ü±S-^V* (3.17) 

Since the last three terms on the right hand side of (3.16) all represent vectors parallel to 

the local ^-surface, any perpendicular component of J must be due to the first term. To 

illustrate how Üj. transports pP relative to a ip-suri&ce, we take the scalar product of VV> 

with (3.17) to show that Üj_ satisfies 

^ + Ux-VV = 0. (3.18) 

Similarly, we assumed in section 3.1 that2 

2Note that üx • VV- = (ü • iH|) (VV- • VV-) = ü ■ V^. 
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^ + ÜX-VV = ^. (3.19) 

According to (3.18), if we are moving with velocity Üj_, ip does not change; thus, from 

(3.16) we see that pP is moving with the ^-surface. In contrast, from (3.19) we see that 

mass is moving through the surface, when ip ^ 0. Although mass may pass through, PV 

substance may not; thus, V'-surfaces are impermeable to pP. 

Interestingly, this result proves that impermeability is satisfied for any choice of ip. In 

other words, as the definition of ip changes, the definition of P^ also changes so that 

impermeability is always satisfied. 

3.2    Specific Potential Vorticity Principles 

The obvious question remaining is what expression do we use for the arbitrary scalar field 

ip? Thus far, we elected not to specify ip until the entire generalized moist PV principle 

was derived and the requirements on ip were identified. In summary, these requirements 

are that: 

i ip = ip (p,p) such that (Vp x Vp) • V^ = 0, 

ii. lim/i_►o•!/, (p,p) -> ip {pa,Pa), 

Hi. ip = 0. 

The requirements are listed in order of importance. Theoretically, (i) is the most important 

requirement, since the solenoidal term must be eliminated; otherwise, we cannot isolate the 

slow manifold dynamics when inverting the PV. Similarly, (ii), although less important, 

guarantees that (3.7) reduces to (3.4) in the dry limit; thus, the moist dynamics are a 

generalization of the dry dynamics. Even though it is unnecessary, (Hi) is desirable since it 

provides for the material conservation of PV, assuming that the first requirement is met, 

the flow is frictionless, and there is no precipitation. 
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Historically, however, most variants of the moist PV equation were derived assuming that 

(iii) is the most important requirement. For example, consider the moist PV defined using 

the equivalent potential temperature3 

0e = *expf|^j. (3.20) 

Substituting (3.20) into (3.4), we obtain the PV conservation equation 

DP        1 1-1 
=HT = 4 (V^ x VP«) • V9e + -C • Vöe + - (V x F) • We, (3.21) 
Dt p% pa Pa 

wherein 

Pe = -C'V0e, (3.22) 
Pa 

is the moist-equivalent PV. Equations (3.20)-(3.22) have been used extensively to study 

hurricanes (Rotunno and Emanuel, 1987), mesoscale convective systems (Rotunno and 

Klemp, 1985), extratropical cyclones (Cao and Cho, 1995), fronts (Benard et al., 1992; 

Persson, 1995), and moist-symmetric instability (Bennetts and Hoskins, 1979; Guoxiong 

et al., 1996). In all of these studies, 6e is materially conserved. 

However, in reality, 6e is only approximately conserved (Wilhelmson, 1977). Fundamen- 

tally, conservation of 6e expresses the conservation of moist entropy; therefore, we derive 

3Note that 6e defined by (3.20) is approximately conserved in a saturated atmosphere only (Hauf and 
Höller, 1987; Klemp and Wilhelmson, 1978; Rotunno and Emanuel, 1987). If we qualify this definition 
by requiring that T be the temperature at which a parcel of air is saturated, then 6e is approximately 
conserved in both a saturated and unsaturated atmosphere (Bluestein, 1992). 
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(3.20) from the thermodynamic energy conservation equation for a moist atmosphere un- 

dergoing isentropic variations. During this derivation, however, we make several simpli- 

fying assumptions (Haufand Höller, 1987; Dutton, 1995). As a result, conservation of 6e 

only approximately expresses the conservation of moist entropy. Furthermore, 6e is not 

conserved if there is appreciable radiative heating, mixing, evaporation of condensate into 

unsaturated air, or latent heating due to fusion and sublimation. As a result, we see that 

(iii) is only approximately satisfied. 

In addition, the dynamics expressed in terms of the moist-equivalent PV are not compara- 

ble to those expressed in terms of the dry PV. Clearly, 6e reduces to 6 in the dry limit (i.e., 

p,v — 0) such that (ii) is satisfied; however, the distributions of dry and moist-equivalent 

PV within moist convection can be significantly different. Consider, for example, the gen- 

eration of PV in the eyewall of a tropical cyclone. Since 0^0 where condensational 

heating is present, dry PV is generated in the eyewall. In contrast, since 0e = 0 when the 

atmosphere is saturated, no moist-equivalent PV is generated in the eyewall. The dry PV 

is a maximum and the moist-equivalent PV is zero. Because of this disparity, it is difficult 

to compare the theoretical understanding obtained from simple dry models that use the 

dry PV (Schubert and Alworth, 1987; Möller and Smith, 1994; Guinn and Schubert, 1993; 

Montgomery and Enagonio, 1998) to those of more complex full-physics models that use 

the moist-equivalent PV. 

Most importantly, 6e does not eliminate the solenoidal term everywhere; therefore, the in- 

version of the moist-equivalent PV is approximate. Since 8e = 6e {pa,Pa,ßv), the solenoidal 

term is not eliminated unless p and p are replaced by pa and pa, respectively, and the at- 

mosphere is saturated such that pv = p,vs (pa,Pa) and 6e = 9e (pa,pa). One might argue 

that small errors introduced by the non-zero solenoidal term in unsaturated regions are 

negligible and do not affect the regions of interest within the moist convection (Rotunno 

and Klemp, 1985); however, recall that the invertibility problem is solved globally such 

that any small errors in one region are communicated to the entire domain. 

Of course, none of this criticism of the moist-equivalent PV should suggest that it is 

not a useful tool for understanding moist dynamics.  Instead, we simply show that it is 
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approximate and wonder if there is a more exact form of moist PV. To obtain such a form, 

we shift our focus from (in) to (i) and (ii), assuming that, in general, ip ^ 0. 

Let us derive the moist PV in terms of a virtual potential temperature. We first define 

a virtual temperature Tp in terms of the total pressure and density, using p = pRaTp 

(Ooyama, 1990). Prom this expression, we further define the virtual potential temperature 

Since 6P = 9P (p,p), the solenoidal term in (3.7) is eliminated under all atmospheric con- 

ditions. Additionally, 0P satisfies the dry limit as (p,p) ->• (pa,Pa)', however, in general, 

6p 7^ 0 due to latent heating and the irreversible loss of precipitation. Substituting (3.23) 

into (3.7), we obtain 

^ = -C • V0„ + - (V x F) • Vöp, (3.24) 
Dt      p P 

where 

Pp = -C'Wp (3.25) 
P 

is the moist PV. 

3.3    Approximate Potential Vorticity Principle 

In Chapter 2, due to a restriction on the lower boundary condition of w, we approximated 

the momentum equation. This approximation alters the model PV equation as well. To 

derive the approximate PV equation, we follow a combination of the steps used to derive 
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(3.4) and (3.7). First, as in (3.7), we let ü be the mass-weighted mean velocity (2.1) in the 

divergence and material derivative terms of (3.3), and substitute the continuity equation 

for the total mass (B.12) to obtain 

D ft-V9P 
Dt m + V Wpx (£*<»)] C-V0p, (3.26) 

where we have used ip = 0p. Second, as in (3.4), we let u be the dry air velocity in the 

definition of C and the bracketed term of (3.26), and substitute the approximate momentum 

equation (B.21) so that (3.26) simplifies to 

DP, 
Dt 

}       1 -      1 /        -\ £ = iC-Wp + -(VxF)-V0p, (3.27) 

wherein F is given by (B.22) and 

PP = -C-V9P (3.28) 

is the approximate form of the moist PV. Equations (3.27) and (3.28) are formally identical 

to (3.24) and (3.25), except that C and F are replaced by C and F, respectively. 



Chapter 4 

CONTROL EXPERIMENT 

Basic research is like shooting an arrow into the air and, where it lands, painting 
a target. 

Homer Adkins 

In the last two chapters, we developed a set of conservation equations for a moist, precipi- 

tating atmosphere. Next, we present results from our control experiment, an axisymmetric 

tropical cyclone simulation, to validate the model against current observations and theory. 

To facilitate the comparison of this experiment with other tropical cyclone simulations, 

we setup the model using the fundamental physics and appropriate numerics (section 4.1) 

necessary to simulate a tropical cyclone, as applied in past axisymmetric models (see ap- 

pendix A). The model setup is followed by a detailed analysis of the results from the 

control experiment (section 4.2), including a description of the evolution and steady state 

structure. 

4.1    Model Setup 

4.1.1    Physics 

Background State: We begin the initialization with a conditionally unstable resting atmo- 

sphere as a background basic state. The vertical structure of this atmosphere is defined 

using Jordan's (1958) mean hurricane season sounding, as shown in figure 4.1. The sound- 

ing has approximately 1600 J kg-1 of ambient CAPE, which hastens the formation of 
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Table 4.1: Model parameters that define the control experiment. 

Parameter Value Description 

vm 12 m s-1 maximum tangential wind speed 
rm 100 km radius of maximum tangential wind 

Zt 24 km height of domain top 

Zs 18 km height at which Rayleigh damping layer begins 
zm 15 km height at which tangential winds vanish 

Zb 1km height of atmospheric boundary layer 

Za 
10 m height of surface layer (anemometer level) 

Ts 28°C sea surface temperature 

Tf 0°C center of freezing zone 
AT/ 1°C width of freezing zone 

/ 5 x 10~5 s-1 Coriolis parameter (20° N) 

as 0.015 s-1 maximum value of Rayleigh damping 

the initial convection and secondary circulation, but is ultimately unnecessary for tropical 

cyclone development in an axisymmetric model given a sufficient finite amplitude initial 

disturbance (Rotunno and Emanuel, 1987). Along the lower boundary, we assume that 

the water vapor is saturated immediately above the ocean surface, with a sea surface 

temperature of 28°C. For a complete list of the model parameters, see table 4.1. 

Vortex Perturbation: Superimposed on the basic state is a cyclonic vortex with vertical 

shear. We define this vortex analytically using the function 

v (r, z) = < 
r o, 

—Krm' 

if   z > zm, 

,    11    z <. zm, 
(4.1) 

where rm and vm are the radius and speed of the maximum tangential wind (Ooyama, 1969; 

Zeng, 1996). The vortex is a maximum at the surface, linearly decays with height, and 

vanishes above zm. Most importantly, for any rm and vm, the initial vortex is inertially 

stable. For the control experiment, we choose rm = 100 km, zm = 15 km, and vm = 

12 m s_1, yielding the vortex illustrated in figure 4.2a. 

The initial vortex expedites the development of the tropical cyclone. First, it provides low- 

level frictional convergence and ascent. This convergent ascent is used instead of buoyant 
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Figure 4.1:   Jordan's (1958) mean hurricane season temperature (solid) and dew-point 
temperature (dashed) soundings. 
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ascent (i.e., a warm bubble) to produce the initial moist convection. Second, the vortex 

provides additional vorticity for tropical cyclone development above that provided by the 

planetary vorticity alone (Gray, 1968, 1979). In the control experiment, for instance, we 

place the vortex at 20°N such that / = 5 x 10~5 s_1. By comparison, the central vorticity 

of the initial vortex is about 5 x 10-4 s_1 or 10/. 

Thermal Wind Balance: To complete the initialization, we iteratively adjust the basic 

state by solving the gradient and hydrostatic balance equations for the pressure until the 

vortex is in thermal wind balance. During the iteration, we assume that the relative 

humidity remains horizontally uniform. This assumption prevents unintended saturation 

as the central pressure decreases. Figures 4.2b and c illustrate the resulting pressure (p1) 

and temperature (T") perturbations relative to the basic state. The iterative adjustment 

produces a maximum perturbation in both fields near the surface, with minimum p' = 

-7.1 hPa and maximum T' = 1.1 K. Since temperature can be related to the vertical 

derivative of pressure through the hydrostatic equation and since the derivative of a field 

is generally more variable than the field itself, there is some noise in the temperature field; 

however, it has no apparent adverse effect on the resulting thermal wind balance. 

Ice Microphysics: Recall from section 2.1.3.2 that we parameterized the phase changes 

of water between solid and liquid by defining a synthesized condensate representing a 

solid and liquid mixture within a prescribed temperature zone. This zone is the same for 

both ascending (i.e., freezing) and descending (i.e., melting) condensate; however, for a 

given problem, the freezing and melting zones may be significantly different. For example, 

within intense mid-latitude mesoscale convective systems, the freezing zone may be very 

deep, as water drops are rapidly lofted above the 0°C isotherm; however, the melting zone 

is typically very shallow, as ice particles quickly melt while gradually falling below the 

0°C isotherm. In contrast, the updrafts of a tropical cyclone are generally much weaker 

(Jorgensen et al., 1983; Black et al., 1994, 1996), thus the freezing and melting zones are 

relatively thin and nearly coincident (Black and Hallett, 1996; Pueschel et al., 1995). As 

a result, our assumption of a single zone is believed a reasonable one for at least some 
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Figure 4.2: Initial vertical cross-sections (r, z) of the vortex a) tangential wind speed (v), 
b) pressure perturbation (p1), and temperature perturbation (T"). Headings above each 
figure indicate the experiment (left); the contoured variable, including units and contour 
interval (A) (center); and the time in units of hh:mm:ss.s (right). Perturbation variables 
are identified by the (-bg) to the right of the variable name. The vertically-oriented chained 
lines mark the interfaces between nested grids, while the distances straddling these lines 
indicate the grid spacing to either side. 
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tropical cyclones. For all of the experiments, we define the zone using Tf = 273.15 K and 

AT/ = 1.0 K [see equation (2.18)]. 

Boundary Layer Microphysics: In section 2.1.3.2, we developed an atmospheric boundary 

layer parameterization. For all of the experiments, the depths of the surface and boundary 

layers are fixed at za = 10 m and zt, = 1000 m, respectively. In addition, we assume that 

all of the exchange coefficients are based on the drag coefficient (Co), which is given by 

Deacon's formula (Rosenthal, 1971; Rotunno and Emanuel, 1987) 

CD = 1.1 x 10"3 + (4.0 x 10"5 s m_1) U, (4.2) 

wherein U = (u2 + v2)5 is the speed of the horizontal wind at za. 

4.1.2    Numerics 

Domain and Boundary Conditions: The vortex and balanced-mass fields are initialized on 

a two-dimensional domain with cylindrical coordinates. The domain size is 24 km high by 

1536 km wide. In the horizontal, the inner, or left, boundary is the axis of the cylindrical 

domain, and the outer, or right, boundary is open with an exponentially decaying solution. 

The e-folding distance of the decay is 1400 km (Ooyama, 1969). In the vertical, the top and 

bottom of the domain are bounded by rigid lids. To prevent the reflection of gravity waves 

off the top lid, a Rayleigh damping layer [see equation (2.68)] extends from zs = 18 km to 

the domain top, with a maximum damping rate of as = 0.015 s_1. 

Nested Grids: The domain is discretized into a series of nested grids. As illustrated in 

figure 4.2 and detailed in table 4.2, the horizontal domain consists of 6 nested grids, each 

having 96 grid intervals. The horizontal grid spacing (Ar) within each grid increases by a 

factor of two from the finest grid at 0.5 km to the coarsest grid at 16.0 km. The vertical 

domain, in contrast, consists of a single grid with 48 grid intervals each, with a grid spacing 

(Az) of 0.5 km. To focus the finest resolution on the vortex core, we align the left boundary 
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Table 4.2: Horizontal grid setup, including the grid number, number of grid points, grid 
spacing (Ar), grid width, and time step (At). 

Grid Number No. of Points Ar (km) Width (km) At (s) 

1 96 0.5 48 2.5 
2 96 1.0 96 5.0 
3 96 2.0 192 5.0 
4 96 4.0 384 10.0 
5 96 8.0 768 10.0 
6 96 16.0 1536 10.0 

of each grid along the central axis of the domain. In addition, the time step on each grid is 

adjusted to guarantee computational stability in both directions. These time steps range 

from 2.5 s on the finest grid to 10.0 s on the coarsest grid. The total integration time for 

the control experiment is 240 hours. We performed a series of sensitivity tests to verify that 

the model physics is not sensitive to this grid configuration. Details of these sensitivity 

analysis will be presented in chapter 5. 

4.2    Model Results 

After initializing the model using the procedure discussed above, we integrate the model 

forward in time to simulate the future state of the tropical cyclone vortex. The evolution 

of the vortex is generally consistent with the results of past axisymmetric models and 

observational evidence. In this section, we examine this evolution beginning with the 

initial development of moist convection and ending with the transition to a steady state. 

This examination is followed by a detailed analysis of the steady-state structure and the 

deviations from that structure. 

4.2.1    Tropical Cyclone Development 

4-2.1.1    Initial Vortex 

Initially, the vortex weakens and develops a low-level secondary circulation.   Figure 4.3 

shows the evolution of the surface vortex from 0-240 hours, in terms of the maximum 
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Figure 4.3: CNTL Experiment — Time series from 0-240 hours of the a) maximum tan- 
gential wind speed (m s_1) and the b) central surface pressure (hPa). 
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tangential wind speed (vmax) and the minimum central pressure (pmin)- During the first 

12 hours, surface friction decelerates the vortex from vmax = 12.0 m s_1 to 9.2 m s_1. 

Simultaneously, the resulting unbalanced pressure gradient accelerates a cross-isobaric ra- 

dial inflow toward low pressure (not shown). Willoughby (1979) used Eliassen's (1952) 

balanced vortex model to demonstrate that this inflow is part of a shallow secondary cir- 

culation forced by the momentum sink, or friction, at the surface. By 12 hours, the inflow 

reaches a maximum of —7.3 m s_1 at 63.8 km. 

Convection initially forms in the region of maximum radial convergence and quickly pro- 

duces a short-lived intensification of the vortex. Figure 4.4 shows cross-sections of the 

developing convection, including the tangential wind speed, in 1-hour increments from 

12-15 hours. At 12 hours, a series of four convective clouds develop between 45-70 km, 

with the most vigorous convection located at 63 km. Rapid ascent follows, as the moist 

convection consumes the ambient CAPE and penetrates the depth of the troposphere. Be- 

neath the convection, precipitation-laden cold downdrafts diverge at the surface, spreading 

laterally as counter-propagating outflows. The inward-propagating outflow, conserving an- 

gular momentum, spins up the vortex to vmax = 27.h m s_1. Because of surface friction, 

however, the vortex rapidly weakens within two hours (see also figure 4.3). 

By 14 hours, a secondary region of convection forms near the center. Internal gravity 

waves, generated by the initial convection, propagate laterally until impinging on the 

closed boundary at the center. The subsequent low-level convergence provides sufficient 

ascent to trigger additional moist convection. 

Due to the axisymmetric geometry, the convection near the axis is structurally different 

from that in the interior of the domain. The divergence in cylindrical coordinates has a 

u/r term that is not present in rectilinear coordinates. For large r, this term is negligible, 

and the divergence in either coordinate is nearly identical; however, for small r, this term 

may be significant. For example, Murray (1970) has shown that moist convection along 

the axis develops an updraft vertical velocity up to five times greater in an axisymmetric 

model as compared to a rectilinear model. The greater ascent was forced by the increased 
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tion in terms of the tangential wind (contouring), precipitation mixing ratio (blue shading), 
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further explanation of the figure markings, see figure 4.2. 
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Figure 4.5: CNTL Experiment — Hovmöller diagram of the surface tangential wind speed 
from 0 to 100 km and 0 to 240 hours. The dashed line marks the 30 m s_1 contour, which 
is slightly less than hurricane intensity, 33 m s_1. 
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Figure 4.6: CNTL Experiment — Hovmöller diagram of 9e at z — 1 km from 0 to 100 km 
and 0 to 240 hours. 

radial convergence in the axisymmetric model. In the control experiment, the maximum 

updraft velocities for the initial and center convection are 18 and 26 m s_1, respectively. 

4-2.1.2    Central Vortex Anomaly 

Such intense updrafts near the axis spin up a small self-sustaining vortex. The radial 

convergence of angular momentum at the base of the convection accelerates the tangential 

wind and increases the central relative vorticity. Maintaining gradient balance, the central 

pressure also decreases. To better understand the temporal and spatial evolution of the 

vortex, figures 4.5 and 4.6 depict the surface tangential wind speed and entropy at a 

height of 1 km using Hovmöller diagrams. Between 40 and 50 hours, the vortex surpasses 

hurricane intensity and by 72 hours reaches a maximum intensity of vmax = 65 m s-1, with 

radius of maximum tangential wind, rmax = 1-0 km. The corresponding surface fluxes of 

latent and sensible energy, which average about 2400 W m-2 and 600 W m~2, respectively, 
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increase 0e at the center and are more than sufficient to sustain the moist convection. The 

persistent convection and corresponding convergence of entropy and angular momentum 

preserve the vortex against dissipation by surface friction. 

Beyond 80 hours, however, the vortex weakens substantially. At this same time, as re- 

vealed in figure 4.5, a secondary tangential wind maximum forms at about 30 km and 

propagates inward, intensifying along the way. This wind maximum is collocated with a 

ring of convection, which eventually contracts to become the new tropical cyclone eyewall. 

According to Shapiro and Willoughby (1982) and Willoughby et al. (1982), both the con- 

vection in the eyewall and at the center produce a secondary circulation. Since the eyewall 

convection is more intense, the superposition of the secondary circulations results in net 

convergence and subsidence atop the center convection. For instance, as the primary up- 

draft in the eyewall increases from 1 to 4 m s_1, the updraft in the center decreases from 

2.5 to 0.5 m s_1. Furthermore, the weak surface inflow into the central convection reverses 

direction, becoming weak outflow, and the upper-level outflow vanishes. By 100 hours, 

the maximum tangential wind of the central vortex decelerates below hurricane intensity 

(figure 4.5) and the central pressure increases over 30 hPa (figure 4.3). However, the vortex 

does not completely dissipate, since a trace of it persists during the entire simulation. 

Such small intense vortices, although not emphasized, seem to be a common feature of pre- 

vious high-resolution axisymmetric tropical cyclone simulations. For example, Yamasaki 

(1983, see his fig. 2) was the first to simulate an axisymmetric tropical cyclone using a 

horizontal grid spacing less than 1 km. He found that a 1-3 km vortex intermittently 

formed prior to the development of the main eyewall. Since Yamasaki did not initialize his 

model with a balanced vortex but with a series of conditionally unstable warm bubbles, 

the vortex formation is not dependent on the pre-existence of ambient relative vorticity; 

however, it could be dependent on the ambient conditional instability. Willoughby et al. 

(1984) produced a similar feature using 2 km horizontal grid spacing. 

In both of these examples, the vortex never reaches hurricane intensity and eventually 

dissipates. We speculate that the disparity between these results and those of the control 
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experiment is primarily due to differences in the use of diffusion. In the control experiment, 

as described in section 2.2.1.1, we use the third-order derivative constraint (i.e., j = 3) 

with a filtering scale length of 2Ax (i.e., lc = 2). This is equivalent to hyperdiffusion with 

a sixth-degree taper in the spectral response and half-amplitude damping for the 2Ax 

wavelength signal (see appendix F). In contrast, both Yamasaki (1983) and Willoughby 

et al. (1984) used Fickian diffusion. This type of diffusion has a broader spectral response 

and possibly greater damping, if the eddy diffusion coefficient is relatively large. Yamasaki 

used constant eddy diffusion coefficients of 100 m2 s_1 and 10 m2 s_1 in the horizontal 

and vertical, respectively, whereas Willoughby et al. used a variable coefficient that was a 

function of the sub-grid turbulent kinetic energy. It is difficult to compare the numerical 

diffusion of this model to the physical forms of diffusion used by Yamasaki and Willoughby 

et al. In the next chapter, however, we show that if physical diffusion is included in the 

model, the central vortex is eliminated. 

Although the central vortex is an artifact of the axisymmetric geometry, we may speculate 

that similar phenomena occur in nature. We can imagine a scenario in which random 

areas of moist convection generate internal gravity waves that may constructively interfere 

with one another to produce convergence, ascent, and moist convection (Emanuel, 1983; 

Mapes, 1993). This convection may ultimately produce the incipient vortex from which 

the tropical cyclone emerges. 

4-2.1.3   Eyewall Replacement Cycle 

From 100 to 180 hours, the tropical cyclone gradually intensifies. As shown in figure 4.3, the 

maximum tangential wind increases from vmax = 52 to 120 m s_1 while the central pressure 

simultaneously decreases from pmin = 933 to 854 hPa. Figure 4.3 also shows that this 

gradual overall increase of intensity is not steady but highly variable. For instance, during 

the 12-hour period following 118 hours, vmax oscillates over 20 m s-1. The variability of 

the tropical cyclone intensity is apparently caused by disturbances of the boundary layer 

inflow and the formation of secondary rings of convection. 
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Since the tropical cyclone intensity is maintained by the continuous transport of angular 

momentum and entropy into the storm core, we examine the variability of intensity by 

analyzing the relative contribution of the transport terms in the tendency equations of 

angular momentum and entropy. To begin this analysis, we rewrite the equations for the 

tangential momentum per unit total mass (2.59) and for the dry-air-specific entropy of 

moist air (2.61) in the form 

dM       dM     (       pT „A dM     dFM     n .. „. 
+ u-^—+[w + —W]-s- + -E

L- = 0, (4.3) dt dr      \        p     J  dz        dz 

ds       ds        ds      1   d ,       TX..  , dFs ,. ., 
— +u— +w— + — — {PrsrW) + -—= 0, (4.4) 
dt       dr        dz     padz dz 

wherein M — rv + \fr2 is the absolute angular momentum and FM = rFv. Figures 4.7-4.9 

show radial profiles of each term in (4.3) and (4.4) computed at a height of 500 m and 

at hours a) 118, b) 121, and c) 127. For comparison and orientation, these figures also 

include profiles of the three wind components at 500 m, the tangential wind field, and the 

location of the convection and precipitation. 

At 118 hours, we observe a weakening primary eyewall with a secondary eyewall beginning 

to form. From about 20 to 40 km, the downward and radial advection of low-entropy air 

by mesoscale downdrafts beneath the stratiform precipitation is greater than the upward 

turbulent flux of high entropy air from the surface, thus the entropy of the boundary layer 

decreases (figure 4.7d). This low-entropy air is then advected into the storm core, where it 

weakens the convection of the primary eyewall by eliminating low-level conditional insta- 

bility. Any remaining convection is sustained by forced ascent due to surface convergence 

and buoyant ascent above the freezing level. Simultaneously, surface friction is depleting 

the angular momentum of the vortex more rapidly than horizontal advection can replenish 

it (figure 4.7c). Some acceleration of the vortex remains near 12 km radius, due to the 

rapid vertical advection of angular momentum from below. Without high entropy air at 
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Figure 4.7: CNTL Experiment — Evolution of a concentric eyewall cycle at 118 hours. 
The panels contain the a) tangential wind (contour), radial and vertical winds (vectors), 
cloud (gray shading, 0.1 g kg-1), and precipitation (blue shading, .1, .5,1,2,3,4,6 g kg-1); 
b) tangential (dot), radial (dash), and vertical (dash-dot, xlO) wind components (radial 
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profiles). The terms in (4.3) and (4.4) are the local change (solid), horizontal advection 
(dot), vertical advection (dash), vertical turbulent flux (dash-dot), and precipitation flux 
(chain). All of the profiles were computed at a height of 500 m. For further explanation 
of the figure markings, see figures 4.2 and 4.4. 
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the surface to drive the convection and the deep upward branch of the secondary circu- 

lation, and without the import of angular momentum, both the eyewall and the vortex 

begin to decay. In contrast, a secondary eyewall, or ring of convection, begins to de- 

velop and intensify at a radius of about 80 km (figure 4.7a). In this case, the absence of a 

stratiform-precipitation-induced downdraft does not obstruct the transport of high entropy 

and angular momentum-rich air into this developing outer eyewall. The secondary eyewall 

propagates inward at a speed of -1.5 m s-1, which agrees well with the observations of 

Willoughby et al. (1982). 

By 121 hours, as seen in figure 4.8, the two eyewalls begin to interact and compete, 

with the outer, or secondary, eyewall dominating the competition. Inertia-gravity waves 

generated by the outer eyewall drive a secondary circulation, which dries the atmosphere 

between the two eyewalls (figure 4.8a). This dry air is entrained into the outer edge of the 

primary eyewall, weakening the convection. Eventually, the subsidence of the secondary 

circulation counteracts the ascent within the primary eyewall (Shapiro and Willoughby, 

1982; Willoughby et al., 1982). In the boundary layer, the transport of entropy and angular 

momentum to the primary eyewall is almost completely disrupted by the presence of the 

secondary eyewall (figure 4.8c and d). All of these factors contribute to the eventual demise 

of the primary eyewall [see Camp and Montgomery (2001) for similar conclusion]. However, 

the demise of the secondary eyewall has also begun as low entropy air is advected into the 

boundary layer by the mesoscale downdrafts. 

Notice the different updraft slopes of the weakening primary eyewall and the strengthening 

secondary eyewall at 121 hours. The slope of the primary eyewall updraft is approximately 

59° from the horizontal, whereas the slope of the secondary eyewall updraft varies from 17° 

in the lower troposphere to 43° in the upper troposphere. In part, the slopes vary due to the 

baroclinicity of the vortex; however, the slope of the secondary eyewall is also modified by 

both the gradient and hydrostatic imbalance of the updraft. In the lower troposphere, the 

flow exiting the boundary layer is supergradient (Willoughby, 1990). Such supergradient 

flow was recently observed in Hurricane Claudette (1991) using Doppler derived winds 
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(Viltard and Roux, 1998). To restore gradient balance, the flow accelerates outward, 

decreasing the updraft slope. In contrast to this horizontal gradient imbalance, a vertical 

hydrostatic imbalance causes the updraft slope in the upper troposphere to increase. As 

condensate freezes in the updraft core above the 0°C isotherm, latent heating increases the 

buoyant acceleration and the updraft slope. As pointed out by Willoughby et al. (1984), the 

mid-level inflow of absolute angular momentum into the secondary eyewall also decreases 

the slope. Radar reflectivities obtained from Hurricane Bonnie (1998) during an eyewall 

replacement cycle showed similar structure (D. Cecil, 2000, personal communication). 

As illustrated in figure 4.9, the secondary eyewall completely replaces the primary eyewall 

by 127 hours, and then it too begins to decay. In many respects, the new primary eyewall is 

identical to the original. This similarity includes the weakening processes and the possible 

formation of another secondary eyewall near 65 or 85 km. Ultimately, figure 4.3 shows that 

the new primary eyewall also decays by about 132 hours. This cycle occurs continuously 

and explains the periodic variations of the tropical cyclone intensity seen in figure 4.3. 

However, it does not explain how the cycle begins through the formation of the secondary 

eyewall. 

4.2.1.4    Formation of Secondary Eyewalls 

The secondary eyewall develops due to ascent forced by low-level convergence and the 

conditional instability of the atmosphere above. Figures 4.10-4.12 depict the development 

of the secondary eyewall prior to 118 hours using the entropy and angular momentum fields, 

as well as soundings through and immediately outside of the convection. The external 

sounding, figure 4.10b, shows that the surface fluxes of entropy and water mass warm and 

moisten the near surface air to 26.8°C and 100% RH, generating conditional instability. 

As shown in figures 4.10c and d, low-level convergence near 90 km, produced either by 

friction or a weak outflow boundary, triggers the initial moist convective ascent. At this 

time, there is no apparent disturbance above the convection to support the ascent. Over 

the next 30 minutes, the cloud top gradually rises from 4 km to just above 7 km.   As 
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the condensate begins to freeze, the additional buoyancy force rapidly accelerates the 

updraft and causes the moist convection to quickly ascend through the remainder of the 

troposphere. 

As the updraft ascends, it vertically advects absolute angular momentum, creating radial 

gradients that alter the inertial stability of the vortex. Figure 4.12d shows the develop- 

ment of a local minimum of absolute angular momentum in the middle troposphere (i.e., 

-3.5 x 105 m2 s_1) and a local maximum in the upper troposphere (i.e., 8.5 x 105 m2 s_1), 

as the updraft impinges on the tropopause. Radially inward of the upper-tropospheric 

maximum, the inertial stability of the flow increases, while the flow becomes inertially 

unstable outside of the maximum. As a result, the upper-level outflow rapidly accelerates 

outward. In contrast, radially inward of the middle-tropospheric minimum, the flow be- 

comes inertially unstable, while the inertial stability of the flow increases outside of the 

minimum. The inertial stability on the outer edge of the convection restricts the radial 

entrainment necessary to support the accelerating updraft; however, the inertial instability 

on the inner edge reinforces the entrainment. The net effect of the accelerations induced 

by the inertial instability acts to tilt the updraft outward. 

The complex interaction of the surface inflow and upper-tropospheric outflow from the sec- 

ondary ring of convection results in the discrete propagation of the secondary eyewall. At 

the surface, the superposition of the outflow from the convective downdraft and the outflow 

from the secondary circulation of the vortex produces net convergence radially inward from 

the secondary eyewall. This convergence is enhanced radially inward of the accelerating 

vortex. As the downdraft descends into the boundary layer, it advects relatively high abso- 

lute angular momentum into the upper-level outflow (figure 4.12d). The inward advection 

of this absolute angular momentum produces a secondary maximum in the radial profile 

of the surface tangential wind. In the middle troposphere, the preferential entrainment 

inward of the secondary eyewall discussed in the previous paragraph reinforces the ascent 

driven by the surface convergence. The periodic formation of convection inward of the 

eyewall convection leads to the discrete contraction of the secondary eyewall. This discrete 
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Figure 4.10: CNTL Experiment — Evolution of the developing secondary eyewall at 
117.0 hours. The panels contain the vertical profiles of temperature and dewpoint temper- 
ature a) through and b) outside of the secondary eyewall, and the contours of c) specific 
entropy and d) absolute angular momentum, the radial and vertical winds (vectors), cloud 
(gray shading, 0.1 g kg-1), and precipitation (blue shading, .1,.5,1,2,3,4,6 g kg-1). For 
further explanation of the figure markings, see figures 4.2 and 4.4. 
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Figure 4.10: Continued. 
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Figure 4.11: CNTL Experiment — Same as figure 4.10 except the time is 117.5 hours. 



92 

(c) CNTL EQUIV POT TEMP (K)    [A=2] 

r   (km) 

PRECIP MIX RATIO (g/kg) CLOUD MIX RATIO (> O.I g/kg) 

.1 0.5 1 

Figure 4.11: Continued. 
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Figure 4.12: CNTL Experiment — Same as figure 4.10 except the time is 118.0 hours. 
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Figure 4.12: Continued. 
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movement ceases when the frictional convergence of the intensifying vortex dominates the 

production of new convection. Although the exact radius at which this occurs is unclear, 

the transition appears to occur within 40 km of the center. 

4.2.2    Tropical Cyclone Steady State 

Beyond 180 hours, the vortex settles into a quasi-steady state. We use the term quasi- 

steady to stress that, while the gradual intensification of the vortex ceases, there remain 

significant variations of the intensity resulting from the mechanism of eyewall replace- 

ment discussed previously. To understand the basic dynamics of the steady-state tropical 

cyclone, we next examine the 180-240 hour mean steady-state structure followed by a 

discussion of the variability. 

4-2.2.1    Kinematic Structure 

The steady-state tropical cyclone is similar in structure to observed and simulated storms 

but much more intense. Figures 4.13a-c depict the 180-240 hour average primary and 

secondary circulations. The cyclonic vortex, or primary circulation, is accelerated to a 

maximum mean surface wind speed of vmax = 107 m s_1, with the peak located beneath 

the eyewall at a radius of 13.5 km. This intense vortex is produced by the advection of 

high angular momentum air toward the center, within the inflow branch of the secondary 

circulation. A fraction of this angular momentum is depleted by surface friction. This 

same air is later advected away from the center within the outflow branch of the secondary 

circulation, accelerating an anticyclonic vortex with a maximum wind speed of —30 m s_1 

located at a radius of 1250 km and a height of 14 km (not shown). Outward from the 

eyewall, the rapid depletion of angular momentum near the surface also elevates the tan- 

gential wind maximum. As discussed previously, the advection of this elevated angular 

momentum into the boundary layer by convective downdrafts helps intensify the surface 

vortex. At the center, a remnant of the initial small intense vortex persists with an elevated 

tangential wind speed of 29 m s_1 at a height of 8 km. 
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Figure 4.13: CNTL Experiment — time-averaged (180-240 hours) cross-sections of the a) 
tangential, b) radial and c) vertical wind speeds (ms_1). The heavy dashed line denotes 
liquid water mixing ratios greater than 0.1 g kg-1. For further explanation of the figure 
markings, see figure 4.2. 
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A weak secondary tangential wind maximum forms outside of the stratiform precipitation. 

This secondary maximum is similar to the mid-tropospheric vortex associated with many 

mesoscale convective systems (Leary and Rappaport, 1987; Gamache and Houze, 1985; 

Raymond and Jiang, 1990; Brandes, 1990; Houze, 1993). Although not completely evident 

in figures 4.13b and c, gradually ascending outflow overlies descending inflow between 40 

and 120 km (Dodge et al., 1999). This solenoidal circulation is produced, in the mean, 

by outward-propagating convective updrafts overlying inward-propagating convective and 

mesoscale downdrafts (see figure 4.12 for example). Similar to the mesoscale convective 

systems cited above, which develop a vortex through horizontal convergence and vorticity 

stretching, the secondary tangential wind maximum develops from the conservation of 

angular momentum within the mid-tropospheric inflow. 

The horizontal branches of the secondary circulation are concentrated into shallow lay- 

ers at the surface and near the tropopause. According to figure 4.13b, the inflow branch 

is confined primarily within a layer below 2 km, with a maximum radial wind speed 

of —31.8 m s_1 located at 21 km. The maximum inflow lies just outside the radius of 

maximum tangential wind. Consequently, the radius of maximum convergence is then ap- 

proximately collocated with the radius of maximum wind. This configuration is consistent 

with the steady-state structure proposed by Shapiro and Willoughby (1982) and Shapiro 

(1983). As noted by Montgomery (2001, personal communication), the maximum radial 

inflow at the surface is approximately a third of the surface maximum tangential wind 

speed, which is consistent with the observational evidence. Similar to the inflow, the most 

intense outflow is confined to a shallow layer between 12 and 18 km. The maximum outflow 

of 29.5 m s_1, however, is located at a radius of about 75 km, which is over 50 km away 

from the eyewall, indicating that a broad region of divergence exists above and outside of 

the eyewall. 

The vertical branches of the secondary circulation vary significantly in intensity and hor- 

izontal scale. Immediately above and sloping away from the region of maximum surface 

convergence (see figures 4.13b and c) is the ascending branch of the secondary circulation, 
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Figure 4.14: CNTL Experiment — time-averaged (180-240 hours) radial profiles of the 
a) «-component (solid) and u-component (dashed) surface momentum fluxes; and the b) 
kinetic (solid), latent (dash), and sensible (dash-dot) surface energy fluxes. For further 
explanation of the figure markings, see figure 4.2. 

embedded within the eyewall convection. Two prominent maxima, with vertical velocities 

of approximately 5.5 m s_1, are located within the ascending branch just above the bound- 

ary layer and in the upper troposphere. The low-level maximum is produced by the abrupt 

vertical redirection of the inflow near the radius of maximum tangential wind, whereas the 

upper-level maximum is produced by the additional buoyant acceleration resulting from 

the release of latent energy by freezing condensate. The width of the ascending branch 

also increases with height, in response to the broad region of divergence discussed previ- 

ously. In contrast, the compensating subsidence in the descending branch of the secondary 

circulation is very weak and extends into the far field of the domain (not shown). 
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Figure 4.15: CNTL Experiment — time-averaged (180-240 hours) radial profiles of the 
bulk transfer coefficients for momentum (solid) and energy/mass transfers (dashed). If 
only a single curve is shown, then the coefficients are identical. For further explanation of 
the figure markings, see figure 4.2. 

The extremely intense winds of the primary and secondary circulation also generate large 

surface fluxes of momentum and energy. Figures 4.14a and b show the radial profiles of the 

surface momentum and energy fluxes averaged from 180 to 240 hours. The tangential and 

radial momentum fluxes, or surface stresses, near the radius of maximum wind are -62 and 

17 N m-2, respectively. In contrast, observed surface stresses are generally less than 10- 

20 N m~2 (Hawkins and Rubsam, 1968; Hawkins and Imbembo, 1976; Shay et al., 1989; 

Ginis and Sutyrin, 1995). Additionally, the surface latent, sensible, and kinetic energy 

fluxes near the radius of maximum wind are 7800, 2200, and 6700 W m~2, respectively. 

These values contrast with the observed surface fluxes of latent and sensible energy, which 

are at the extreme only 1858 and 355 W m-2, respectively (Black and Holland, 1995). 

Finally, the Bowen ratio, or the ratio of the sensible to latent heat flux, is 0.28, which is 

about twice the observed value of 0.16 (Hawkins and Imbembo, 1976; Frank, 1978; Black 

and Holland, 1995). 

The incredible surface fluxes result primarily from the large velocity-dependent mass, mo- 

mentum, and energy exchange coefficients. Figure 4.15 shows the 180-240 hour average 

radial profiles of the drag coefficient (CD) and the mass and energy exchange coefficient 

(CH)- Recall that for the control experiment, we chose CH = CD; therefore, the two 

profiles are identical. At the radius of maximum tangential wind, the profile of CD has a 
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maximum of 5.3 x 10~3. This large value is in agreement with the wind speed dependence 

of CD as defined by equation (4.2) and with linearly extrapolated values of CD obtained 

from past observational estimates, but is significantly greater than the typically observed 

estimates [e.g., CD ~ 2 x 10-3, (Hawkins and Rubsam, 1968; Moss and Rosenthal, 1975)]. 

According to equation (2.26), this implies that the surface flux will also be greater than 

typically observed. 

4-2.2.2    Thermodynamic Structure 

The thermodynamic structure of the tropical cyclone is consistent with a warm-cored 

thermally-balanced vortex. Figure 4.16 shows the 180-240 hour mean cross-sections of 

T', p', and the water vapor mixing ratio (/z„). The maximum T' produced by the sec- 

ondary circulation of the primary eyewall, neglecting the effect of the central vortex, is 

approximately 17 K, which is centered on the axis at a height of 12 km or 197 hPa. Hydro- 

statically, the temperature distribution produces a minimum p' at the surface of -145 hPa 

or pmin = 870 hPa (see figure 4.16). In addition, the maximum pressure gradient is located 

near the inner edge of the eyewall, whereas there is almost no pressure gradient within the 

eye. This difference agrees well with the intense tangential winds beneath the eyewall and 

near stagnant winds inside of the eye, as shown in figure 4.13a. 

The axis of maximum T" extends both outward into the stratiform precipitation and down- 

ward along the inner edge of the eyewall. Both T' anomalies result from diabatic and 

adiabatic warming forced by the moist convective ascent and dry descent, respectively, 

associated with the counter-rotating secondary circulations induced by the eyewall convec- 

tion. The horizontal extent of these secondary circulations is controlled by the radius of 

deformation 

A = rH, (4.5) 

[(/ + ^)(/+?)]! 
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Figure 4.16: CNTL Experiment — time-averaged (180-240 hours) cross-sections of the a) 
perturbation temperature, b) perturbation pressure and c) water vapor mixing ratio. For 
further explanation of the figure markings, see figures 4.2 and 4.13. 
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wherein N is the Brunt-Väisälä frequency and H is the depth of the troposphere divided 

by 7T. The deformation radius is a measure of the inertial stability or "stiffness" of the 

vortex (Schubert and Hack, 1982). When A is small, the vortex is stiffened such that the 

horizontal extent of the secondary circulation is restricted by the inertial stability of the 

flow. Assuming H « 5 km along the inner edge of the eyewall, A is less than 5 km; however, 

within the outflow, A is over 300 km. Therefore, we observe a narrow secondary circulation 

and adiabatic warming constrained to the inner edge of the eyewall, as compared to a broad 

secondary circulation outside of the eyewall. Note that the convection of the central vortex 

does produce evaporative cooling in the lower troposphere, while the predominant warming 

of the troposphere produces a negative surface p' over the entire domain. The latter effect 

results from the lack of radiative cooling discussed in section 2.1.3.2. 

Minimum values of T" are found near the surface beneath the eyewall and within the 

outflow. Below the 0°C isotherm, both melting and evaporation cool the lower troposphere. 

The maximum cooling and negative T' of about 1°C are found just outside of the eyewall, 

where the precipitation rate is the greatest. In contrast, the negative T" in the upper 

troposphere is larger both in magnitude and horizontal extent. As the troposphere warms, 

its depth increases. The air above the tropopause adiabatically cools as it is forced upward, 

producing a broad temperature minimum of about -12°C. Hydrostatically, this cold 

anomaly induces a 1-hPa positive pressure perturbation in the outflow, which is consistent 

with the anticyclonic flow aloft. Rotunno and Emanuel (1987, see figure 8) produced similar 

temperature anomalies in an axisymmetric tropical cyclone simulation in which radiative 

cooling was excluded. When radiation was included, the central pressure increased and 

the cold temperature aloft was greatly reduced. 

The dynamics of the eye and eyewall also have a distinct influence on the distribution of 

water vapor, as shown in figure 4.16c. Radially, (iv is a maximum in the eyewall, due to 

positive vertical advection within the updraft. Inside of the eye, /i„ is a minimum along the 

inside of the eyewall, due to subsidence, and a maximum at the center, due to convection 

along the axis. At the surface, the large flux of water vapor increases ßv outside of about 
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Figure 4.17: CNTL Experiment — time-averaged (180-240 hours) cross-sections of the 
absolute angular momentum, M (solid) and the equivalent potential temperature, 0e 

(dashed). For further explanation of the figure markings, see figure 4.2. 

25 km to 23.9 g kg-1, which is 5.5 g kg-1 greater than the initial value. The corresponding 

surface relative humidity is nearly 100% (not shown). Beneath the eyewall, downdrafts, 

which have been partially dried by condensation and precipitation, produce a local surface 

minimum of 21.6 g kg-1 at a radius of 14 km. 

The combined effects of temperature and water vapor on convective stability are revealed 

in the 180-240 average distribution of equivalent potential temperature (0e), as shown in 

figure 4.17. This figure also includes the distribution of absolute angular momentum (M). 

The orientation of the 6e and M contours differs significantly across the vortex. Within 

the eyewall, for example, the contours are nearly aligned; however, there are subtle yet 

important departures. To see and understand these departures more clearly, figure 4.18a 

shows the 180-240 average profiles of temperature and dewpoint temperature, computed 

along an M contour that begins at a radius of 12 km and passes through the eyewall. Since 

M is materially conserved above the boundary layer, the profile represents the temperature 

of the ascending flow. From figure 4.18a, we observe that below the 0°C isotherm, at a 

height of about 5 km, 9e is nearly conserved; however, above the 0°C isotherm, it increases 

due to the additional latent energy released by freezing condensate. In contrast to the 

eyewall, the 9e and M contours in the surrounding environment are nearly orthogonal. 
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Figure 4.18: CNTL Experiment — time-averaged (180-240 hours) vertical profiles of 
temperature and dewpoint temperature at a) r = 12 km and b) r = 100 km. Above 
z = 1 km, both profiles are computed along R — constant, wherein r and R are related by 
\fR2 = rv + i/r2. 

Figure 4.18b is identical to figure 4.18a, except that the profile begins at a radius of 

100 km. Outside of the eyewall, the large surface fluxes of energy and water mass increase 

the surface 0e, generating significant conditional instability in the lower troposphere. As 

discussed previously, this instability is a prerequisite for the formation of secondary rings 

of convection. Notice also that a weak stable layer develops above the 0°C isotherm. If 

the conditional instability were reduced (i.e., if the boundary layer was cooler and drier), 

the model might reproduce the multi-tiered cloud structures often observed in the tropical 

atmosphere (Johnson et al., 1999) and in the surrounding environment of tropical cyclones 

(R. Henning, 2000, personal communication). 
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4-2.2.3   Precipitation Structure 

The distribution of precipitation is similar to the observations, but the precipitation rate is 

much too large. Figure 4.19 shows the 180-240 hour average cross-sections of the terminal 

velocity (W) and precipitation rate, overlying the cloud (fic) and precipitation (/ir) mixing 

ratios. Above the 0°C isotherm, the terminal velocity is about 2 ms"1, whereas below 

this level, it increases to as much as 8 m s_1 within the eyewall. Both values are consistent 

with the observations (Black and Hallett, 1996; Pruppacher and Klett, 1996). Due to 

the relatively small terminal velocity aloft and the intense outflow, the precipitation is 

advected far from the eyewall (Lord et al., 1984; Black and Hallett, 1996), resulting in 

surface precipitation rates of about 10-40 mm hr-1. However, beneath the eyewall, W 

and \xr are both large, producing a precipitation rate of over 200 mm hr_1. 

4.2.2.4    Moist Potential Vorticity Structure 

From the kinematic and thermodynamic fields presented above, we next diagnose the moist 

potential vorticity of the steady state. In figure 4.20c, we see the 180-240 hour mean cross- 

section of the moist potential vorticity (MPV) anomaly (P'p - Pp - Pp). To calculate the 

anomaly, we derive expressions for Pp and Pp in cylindrical coordinates using equation 

(3.28). Assuming axisymmetry, these expressions are given by 

*-;{-S2 + ['+^]£}. 

and 

PP = ^. (4-7) 
p dz 

Figure 4.20 also includes the vertical component of the absolute vorticity (C = / + 

d(rv) /rdr), the virtual potential temperature {8p), and the eyewall cloud. 
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Figure 4.19: CNTL Experiment — time-averaged (180-240 hours) cross-sections of the a) 
terminal velocity, W and b) the precipitation rate. For further explanation of the figure 
markings, see figure 4.2. 



107 

a) CNTL Z-VORTICITY (1.E-3 /s)    [A=    5.0] 180:00:00.0-240:00:00.0 

»v„ r '~*^ >   ,o„ ' _, _     J<T*f-^S>'i— ■*?. «— --o.^-< 
<    v    I   ■ J 

i     / 
I  / 

\ _ • 

40 60 80 

VIRT POT TMP (K)    [A=  10.0] 

100 120 140 

180:00:00.0 - 240:00:00.0 

E 

•:*L—i !--J_ m&m 
_—-©to —— 

:     / .....,,-, 

r/- 
 330 - 

»A wS 
ly- 

-310- 

0 20 40 60 80 

(c) CNTL MOIST PV(-bg) (PVU)    [A= 25.0] 

100 120 140 

180:00:00.0 - 240:00:00.0 

-CT^JSC 

E 

/ V „ 
■/°N^«-L.„   /I 

/ 

r 

»* 

40 60 80 

r    (km) 

100 120 140 

Figure 4.20: CNTL Experiment — time-averaged (180-240 hours) cross-sections of the a) 
vertical component of absolute vorticity, C; b) the virtual potential temperature, 0P; and 
c) the moist potential vorticity, Pp. For further explanation of the figure markings, see 
figure 4.2. 
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The distribution of Pp has three distinct maxima: one along the central axis, which is a 

remnant of the central vortex, and two along the inner edge of the eyewall convection. As 

discussed previously, the central maximum is an artifact of the axisymmetric geometry; 

therefore, we will not examine it in detail but concentrate instead on the other two maxima. 

Figure 4.13a shows that the horizontal shear across the inner edge of the eyewall is relatively 

large in the middle troposphere, with tangential wind speeds increasing by 60 m s_1 over 

only 5 km radius. This shear is much smaller in the upper and lower troposphere, due to 

the spreading of M contours, as figure 4.17 clearly indicates. In the lower troposphere, 

near the surface, M contours diverge as variable surface friction depletes the tangential 

momentum of the vortex, whereas in the upper troposphere, M contours spread within the 

divergent outflow of the eyewall. Obviously, as figure 4.20a confirms, such large horizontal 

shear translates to a maximum of £, and ultimately a maximum of P'p = 275 PVU. In 

contrast, the upper-tropospheric maximum of P'p — 275 PVU is a consequence of the 

large horizontal temperature gradient, resulting from the warm core of the vortex and the 

relatively large vertical shear of the tangential wind beneath the tropopause. 

Other less distinct features in the distribution of P'p are also of interest. Within the outflow 

layer, for example, P'p < 0 and has a minimum value of P'p = -10 PVU, which is consistent 

with the anticyclonic outflow. Likewise, the mid-tropospheric cyclonic inflow immediately 

outside of the stratiform precipitation has a maximum value of Pp = 10 PVU. Shapiro 

and Franklin (1995, see figure 11) observed a similar feature with a magnitude of 4 PVU 

in the symmetric PV distribution of Hurricane Gloria (1985). Notice also the "notch" in 

the 25 PVU contour located outside of 15 km and slightly below 5 km. Beneath the 0°C 

isotherm, the diabatic cooling due to evaporating and melting precipitation depletes the 

PV, creating the vertical discontinuity. 

In chapter 3, we stressed the differences between the MPV derived using 6p, the equivalent 

PV (EPV) derived using 0e, and the dry PV (DPV) derived using 9. These differences 

are revealed in the comparison of figure 4.20c with figures 4.21a and b, which show the 

180-240 hour mean cross-sections of the EPV and DPV, respectively.  As expected, the 
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Figure 4.21: CNTL Experiment - time-averaged (180-240 hours) cross-sections of the a) 
dry, or Ertel, potential vorticity, Pg and b) equivalent potential vorticity, Pe. For further 
explanation of the figure markings, see figure 4.2. 

EPV is nearly zero in the eyewall, where the MPV and DPV are a maximum. In contrast, 

all three forms of PV have almost the same distribution along the inner edge of the eyewall 

in the upper troposphere. This similarity results because 0e and 6p reduce to 6 in the 

upper troposphere, where the water content of the atmosphere is relatively small. Finally, 

comparing figures 4.20c and 4.21a, we see that the addition of vapor and condensate to 

the MPV apparently has little affect on the balanced dynamics, since the distribution of 

the MPV and DPV are nearly identical. 

4-2.2.5   Deviations from Steady State 

Not only the mean steady state, but the deviations from that mean, provide insight into 

the evolution of the tropical cyclone. Rather than calculate the statistical deviations (e.g., 
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Standard deviation), however, we simply consider an instantaneous example. In particular, 

we will examine the instantaneous state of the tropical cyclone at 180 hours. 

The instantaneous kinematic fields differ significantly from the mean steady state. Fig- 

ures 4.22a-c reveal that the 180-hour primary and secondary circulations are even stronger 

than those of the mean steady state, which were presented in figures 4.13a-c. Specifi- 

cally, the maximum tangential wind speed of the primary circulation is over 120 m s-1 at 

r = 12 km. Similarly, the minimum and maximum radial wind speeds within the inflow 

and outflow layers of the secondary circulation are -34 and 47 ms"1, respectively, while 

the maximum vertical wind speed in the ascending branch of the secondary circulation 

is 34 m s_1. Most striking is the 25 m s_1 outflow atop the boundary layer within the 

eyewall. Similar outflows of 10-15 m s_1 are collocated with the convective updrafts at 

r = 48 and 60 km. In contrast, a weak secondary circulation is evident along the inner 

edge of the eyewall. Weak subsidence of 2-5 m s_1 is evident just inside of the primary 

eyewall. This extremely narrow secondary circulation results from the increased inertial 

stability along the inner edge of the eyewall, which decreases A and restricts the radial flow 

(Shapiro and Willoughby, 1982). 

Outside of the eyewall, the instantaneous state reveals convective updrafts and mesoscale 

downdrafts that are not evident in the steady state. Figure 4.22c shows two convective 

updrafts at r = 48 and 60 km, with maximum vertical velocities of 18 and 4 ms"1, respec- 

tively. Freezing of condensate above the 0°C isotherm warms and buoyantly accelerates 

the updrafts, causing the inner deeper updraft to be more intense than the outer shallow 

updraft. Likewise, melting of condensate below the 0°C isotherm cools and buoyantly ac- 

celerates the downdraft. As a result, the convective updrafts are surrounded by mesoscale 

downdrafts of 1-2 m s_1 generated by the melting stratiform precipitation. According to 

figure 4.22b, these downdrafts disturb the inflow by transporting low radial momentum 

into the boundary layer. On average, the convective updrafts dominate such that the mean 

steady state is represented by weak ascent outside of the eyewall, as seen in figure 4.13c. 

In contrast to the kinematic fields, the instantaneous thermodynamic fields are nearly 

identical to the steady state. For instance, the p', T', and \i'v cross-sections at 180 hours, 
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Figure 4.22: CNTL Experiment — 180-hour cross-sections of the a) tangential, b) radial 
and c) vertical wind speeds (ms_1). For further explanation of the figure markings, see 
figures 4.2and 4.13. 
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Figure 4.24: CNTL Experiment — 180-hour cross-sections of the absolute angular mo- 
mentum, M (solid) and the equivalent potential temperature, 6e (dashed). For further 
explanation of the figure markings, see figure 4.2. 

as seen in figures 4.23a-c, are similar in overall structure to those seen in figures 4.16a-c, 

with the addition of small-scale perturbations produced by individual convective elements. 

This is especially true of the p' field. Likewise, we notice in figure 4.24 that the M and 9e 

surfaces are nearly aligned within the eyewall, as in figure 4.17, except in the vicinity of the 

0°C isotherm. The variability resulting from individual convective elements is eliminated 

in the mean. 

The instantaneous PV field, which is derived from both the kinematic and thermodynamic 

fields, not only has a maximum in the middle troposphere, as in the steady state, but near 

the surface as well. Figures 4.25a-c show the 180-hour cross-sections of (, 9P, and P'p as in 

figures 4.20a-c. At the surface and beneath the eyewall, P'p has a maximum of over 3160 

PVU. The PV is generated within the eyewall near the surface and above the 0°C isotherm, 

where the latent heating due to condensation and freezing, respectively, are greatest. It is 

then advected vertically in the updraft. Simultaneously, the PV is depleted primarily by 

surface friction and evaporation within the boundary layer. When the eyewall weakens, 

the frictional and evaporative depletion dominate, and the PV anomaly decreases near the 

surface. As the convection of the primary eyewall dissipates, it leaves behind its signature 

in the PV field. This PV later merges with the PV of the replacement eyewall. 
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Figure 4.25: CNTL Experiment — 180-hour cross-sections of the a) vertical component of 
absolute vorticity, C; b) the virtual potential temperature, 8p; and c) the moist potential 
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One of the most interesting characteristics of the tropical cyclone depicted in figures 4.22- 

4.25 is the frontal-like structure of the inner eyewall. As pointed out by Emanuel (1997), 

the frictionally-forced radial convergence inside the radius of maximum tangential wind 

speed is frontogenetic. For instance, figures 4.22a and 4.23a show that the shear across the 

inner edge of the eyewall is 50 m s_1 km-1, while the temperature gradient is 9 C km-1. 

During the contraction of the eyewall, this frontal zone compresses and would eventually 

become a discontinuity, if not for the numerical diffusion of the model. In the next chapter, 

we also consider the effect of physical diffusion on the discontinuity. 



Chapter 5 

SENSITIVITY EXPERIMENTS 

If we knew what it was we were doing, it would not be called research, would it? 

Albert Einstein 

In the last chapter, we conducted a control experiment to validate the simulated tropical 

cyclone against the observational evidence and current theory. In chapters 1 and 4, we 

identified several parameters affecting the intensity of a tropical cyclone. In this chapter, 

we test the variability of the maximum intensity, or steady state, of the simulated tropical 

cyclone with several of these parameters through a series of sensitivity experiments. We 

begin by discussing the experiments that test the sensitivity of the numerical configuration, 

with emphasis on the horizontal and vertical grid spacing (section 5.1). We then present 

several experiments that test the sensitivity of the physical configuration, including the 

ice and precipitation microphysics, and the diffusion (section 5.2). A list of the sensitivity 

experiments is presented in table 5.1. 

5.1    Numerical Sensitivity Experiments 

Before testing the model sensitivity to variations of the physical parameters, we verified 

that the control experiment was reasonably insensitive to the numerical configuration. 

Specifically, we tested the sensitivity to the grid resolution, the domain size, the outer 

boundary condition, and the depth of the damping layer. Almost all of these experiments 

(details not shown) indicated that the control experiment is relatively insensitive to vari- 

ations of the chosen numerical configuration. The exceptions to this general conclusion 

were the horizontal and vertical grid spacing. 
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Table 5.1: Model parameters varied in each sensitivity experiment. 

Experiment Definition 

HGS16KM no ice, Ar = 16 km 
HGS8KM no ice, Ar = 8,16 km 
HGS4KM no ice, Ar = 4,8,16 km 
HGS2KM no ice, Ar = 2,4,8,16 km 
HGS1KM no ice, Ar = 1,2,4,8,16 km 
HGSHKM no ice, Ar = 0.5,1,2,4,8,16 km 
VGS1000M Az = 1000 m 
VGS750M Az = 750 m 
VGS500M Az = 500 m (same as CNTL) 

NICE no ice effects (same as HGSHKM) 
NOTV no temperature dependent W 
NILE no ice latent effects 

NWMO no conservation of precipitation momentum 
PSAD pseudoadiabatc 
CDIF constant horizontal diffusion 
SDIF Smagorinsky horizontal diffusion 

5.1.1    Horizontal Grid Spacing (HGS[H-16]KM) 

To determine the optimal resolution in the horizontal, we performed a series of experiments 

that tested the model sensitivity to changes in the horizontal grid spacing (Ar). Each 

experiment was identical to the control, except that the number of grids and Ar on each 

grid were varied. In addition, to decrease the time required to reach a steady state, ice 

was neglected. The first experiment used a single grid with Ar = 16 km (i.e., grid number 

6 as defined in table 4.2). In successive experiments, a grid with ^Ar of the finest grid 

from the previous experiment was added. The final experiment then used six grids with 

Ar = 0.5,1.0,2.0,4.0,8.0 and 16.0 km (i.e., grid numbers 1-6). 

From these experiments, we discovered that the model steady state is extremely sensitive 

to Ar within a range of values commonly used in previous axisymmetric tropical cyclone 

models. Figure 5.1 shows the results of the six sensitivity experiments, expressed using 

the maximum tangential wind speed (vmax), the minimum surface pressure (pm»n) and the 

center surface equivalent potential temperature (9e). From figure 5.1a, we see that, as Ar 

of the finest grid decreases below 16 km, vmax increases from 63 m s_1 to an approximate 
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Figure 5.1:  HGS[H-16]KM Experiments — Same as figure 4.3, including the c) central 
surface equivalent potential temperature (K). 
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maximum of 130 ms-1. Convergence to this maximum value occurs when Ar < 4 km. 

According to figures 5.1b and c, unlike vmax, the values of pmj„ and 0e do not change 

linearly with Ar. As Ar decreases below 16 km, pmin decreases from 913 to 784 hPa and 

6e increases from 379 to 417 K; however, when Ar decreases below 4 km, the changes in 

Pmin and 8e reverse. As Ar reduces to 0.5 km, pmin increases to 850 hPa and 6e decreases 

to 375 K. Most importantly, these results demonstrate that the model physics is extremely 

sensitive to Ar, which arguably has long been understood (Rosenthal, 1970a; Lord and 

Lord, 1988) but seldom emphasized when interpreting results. 

To understand this sensitivity, we examine the variability of the tropical cyclone dynamics 

to changes in Ar through the radius of maximum tangential wind speed (rmax) at the 

surface and the length scale of the horizontal diffusion (i.e., the cutoff wavelength, lc, 

discussed in section 2.2.1.1). Figures 5.2 and 5.3 show the cross-sections of tangential 

wind speed and temperature for Ar = 1, 4, and 16 km of the finest grid. As we reduce Ar, 

the value of rmax decreases from 23 to 9 km, whereas vmax increases from 73 to 112 m s-1. 

The value of rmax decreases because the model resolves a smaller eye; and the value of vmax 

increases because the inflow, which is limited by rmax, advects angular momentum closer 

to the center. Since the angular momentum is not advected beyond rmax into the eye, 

the acceleration of the tangential wind inside of rmax, which is necessary to maintain the 

rotation of the eye against dissipation by surface friction, must be produced by the diffusion 

of angular momentum into the center. The radial extent of this diffusion is greatest from 

2-4 Ar (i.e., lc = 2). Thus, for Ar > 4 km, the diffusion extends to the center and the 

tangential wind inside of rmax approaches solid body rotation Conversely, for Ar < 4 km, 

the diffusion does not extend to the center and the tangential wind speed inside of the 

eye is relatively stagnant, with a sharp gradient just inside of rmax. Not surprisingly, this 

sharp gradient has an approximate width of 2-4Ar; thus, in the limit of infinitesimally 

small Ar, the sharp gradient would become a discontinuity. Furthermore, it appears that 

rmax would converge to a value somewhere between 7 and 10 km. 
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Figure 5.2: HGS[1, 4, 16]KM Experiments — 120-hour (near steady state) cross-sections 
of the tangential wind speed for a) Ar = 1 km, b) Ar = 4 km, and c) Ar = 16 km. For 
further explanation of the figure markings, see figures 4.2 and 4.13. 
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Figure 5.3: HGS[1, 4, 16]KM Experiments — 120-hour (near steady state) cross-sections 
of the temperature for a) Ar = 1 km, b) Ar = 4 km, and c) Ar = 16 km. For further 
explanation of the figure markings, see figures 4.2 and 4.13. 
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Figure 5.4: VGS[500,750,1000]M Experiments — Same as figure 4.3. 
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5.1.2    Vertical Grid Spacing (VGS[500,750,1000]M) 

We also performed a series of experiments to test the model sensitivity to changes in the 

vertical grid spacing (Az). Specifically, we conducted three tests with Az = 500, 750, 

and 1000 m. In addition, we included ice in these experiments to verify that the model 

resolves convective and stratiform outflows within the boundary layer, which are enhanced 

by the latent cooling produced by melting precipitation. Figure 5.4 shows the results of 

the three sensitivity experiments, expressed using vmax and pmin- From these results, it 

appears that the model is less sensitive to Az than to Ar; however, it is not apparent that 

this result will hold for even smaller Az. Unfortunately, our ability to further resolve the 

vertical is restricted by computational limitations. 

5.2    Physical Sensitivity Experiments 

Previous axisymmetric models have been used to test the sensitivity of tropical cyclone 

development to various parameters, including the surface exchange coefficients (Ooyama, 

1969; Rosenthal, 1971), Coriolis parameter (Khain, 1984; DeMaria and Pickle, 1988; Bister, 

1997), and sea surface temperature (Ooyama, 1969; Rotunno and Emanuel, 1987; Zeng, 

1996). To be consistent, we performed similar tests and verified that the model has the 

same sensitives. Rather than focus on these results, however, we focus instead on other 

sensitivities that remain unsolved or unexplored, including the ice and precipitation mi- 

crophysics, and turbulent diffusion. From these sensitivity tests, we gain new insights into 

the parameters limiting tropical cyclone intensity. 

5.2.1    Ice (NICE/NOTV/NILE) 

From the introduction, we recall that Willoughby et al. (1984), Lord et al. (1984), and 

Lord and Lord (1988) numerically studied tropical cyclone intensity changes resulting from 

variations to the ice microphysics (see figure 1.1). From their results, we discover that the 

simulated tropical cyclone intensifies more slowly when ice is included, and attains a peak 
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Table 5.2: Matrix illustrating the relationship between the ice microphysics experiments. 

Experiment latent effects temperature-dependent terminal velocity 

CNTL Y Y 
NOTV Y N 
NILE N Y 
NICE N N 

intensity that is slightly less and more variable than when ice is not included. According 

to Willoughby et al., the differences develop because the primary eyewall in the simulation 

with ice is disturbed by the formation of numerous secondary rings of convection. This 

formation was apparently sensitive to the distribution of ice outside of the eyewall and 

the mesoscale downdrafts that melting ice produces. The secondary rings, or eyewalls, in 

conjunction with the mesoscale downdraft, inhibit the convection of the primary eyewall, 

and disturb the necessary inflow of mass, momentum, and energy into the storm core. 

However, in all of their experiments, the latent effects alone are somewhat obscured by the 

complexity of the ice microphysics. 

We next test the sensitivity of our model to variations in the ice microphysics using the 

simple representation of ice formulated in section 2.1.3.2. The latent effects of ice are 

incorporated into the model not through various species of frozen condensate and numer- 

ous conversion processes, but through a single combined condensate, represented by an 

interpolation of the saturation vapor pressures over a plane surface of water and ice. Fur- 

thermore, the reduced settling speed of geometrically complex ice particles is included in 

the model through a temperature-dependent terminal velocity, which decreases for tem- 

peratures below freezing. Remembering that our CNTL experiment presented in chapter 4 

included ice, we now perform sensitivity experiments with no ice dependencies (i.e., exper- 

iment NICE), with the latent effects of ice but no temperature-dependent terminal velocity 

(i.e., experiment NOTV), and with the temperature-dependent terminal velocity but no 

latent effects of ice (i.e., experiment NILE). Table 5.2 illustrates the relationship between 

the various ice microphysics experiments. 

It is clear from these experiments that the ice microphysics systematically affects the trop- 

ical cyclone steady-state intensity. Figure 5.5 shows the evolution of the simulated tropical 
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cyclone in terms of vmax and pmin for the CNTL, NICE, NOTV, and NILE experiments. 

Notice that the CNTL, NICE, and NOTV experiments are relatively similar during the 

first 80 hours. This similarity is primarily due to the anomalous central vortex discussed in 

section 4.2.1.2 and not the developing tropical cyclone vortex. Beyond 180 hours, however, 

all four experiments settle into a near steady state. The NICE and NOTV experiments 

have a steady-state intensity that is significantly greater than the CNTL and NILE ex- 

periments. To understand the physics behind these differences, we next consider each ice 

microphysics experiment independently. 

In the NICE experiment, the simulated tropical cyclone develops more rapidly and attains 

a steady-state intensity that is greater than the CNTL experiment. Figure 5.5 shows that 

the intensities of the CNTL and NICE experiments diverge substantially at about 93 hours. 

During the next 30 hours, the NICE tropical cyclone rapidly intensifies and reaches a near 

steady state, with vmax « 135 m s_1 and pmin « 830 hPa. In contrast, the CNTL tropical 

cyclone requires an additional 60 hours to reach a steady state, with vmax « 101 m s_1 and 

Pmin « 870 hPa. Not only is the steady-state intensity of the CNTL experiment distinctly 

less than the NICE experiment, but it is noticeably more variable as well. Specifically, the 

periodic variations of vmax in the CNTL experiment are 10-20 m s_1 greater than in the 

NICE experiment. 

As evidenced in section 4.2.1.4, the differences between the CNTL and NICE experiments 

are caused by the development and contraction of secondary eyewalls in the CNTL ex- 

periment that do not develop in the NICE experiment. To illustrate the point, figure 5.6 

shows the Hovmöller diagram of the surface tangential wind speed for the NICE exper- 

iment. Comparing this figure with figure 4.5, we see that the initial contraction of the 

primary eyewall in the CNTL experiment (i.e., « -0.75 m s_1) is more rapid than in the 

NICE experiment (i.e., « -0.25 m s_1), assuming that a maximum in the tangential wind 

field is coincident with the convection of the eyewall. The rate of contraction in the CNTL 

experiment is enhanced by the additional buoyant decent induced by melting precipitation. 

By about 123 hours, in the NICE experiment, the eyewall contraction decelerates to a near 
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Figure 5.5: NICE, NOTV, and NILE Experiments — Same as figure 4.3. 
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Figure 5.6: NICE Experiment — Same as figure 4.5. 

steady state, with a radius of maximum tangential wind speed of 8.5 km. In the CNTL 

experiment, however, the primary eyewall dissipates as a secondary eyewall develops, con- 

tracts, and replaces the primary eyewall. Several of these eyewall replacement cycles occur 

during the tropical cyclone development. Beyond 180 hours, the CNTL tropical cyclone 

attains a quasi-steady state with a radius of maximum tangential wind speed of approx- 

imately 13.5 km. With no secondary eyewalls to disturb the development of the primary 

eyewall, the NICE experiment rapidly develops a relatively intense steady tropical cyclone 

with a relatively small eye. 

The reason that secondary eyewalls do not form in the NICE experiment is that the 

necessary stratiform precipitation, discussed in section 4.2.1.4, does not develop. Fig- 

ures 5.7-5.10, which are identical to figures 4.13-4.20, except that the fields are averaged 

from 120-240 hours, show the structure of the NICE tropical cyclone. Comparing the 

figures, we see that above 5 km the minimum terminal velocity is -10 m s_1 in the NICE 

experiment and -2 m s_1 in the CNTL experiment. In contrast to this relatively large 

difference, the instantaneous secondary circulations are relatively similar in magnitude, 
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with the NICE experiment being slightly stronger by 5-10 m s_1. Thus, in the CNTL 

experiment, the precipitation is lofted into the outflow and advected far from the eyewall; 

however, in the NICE experiment, much of the precipitation falls from the sloping updraft 

without being ejected into the outflow. As a result, the surface precipitation extends to 

almost 100 km in the CNTL experiment but only about 45 km in the NICE experiment. 

Furthermore, since the precipitation is distributed over a smaller area in the NICE experi- 

ment, the precipitation rate is a factor of four greater than the CNTL experiment. Without 

the stratiform precipitation to precondition the atmosphere for moist convection, and to 

provide the mesoscale downdrafts that induce surface convergence and ascent, secondary 

eyewalls do not form in the NICE experiment. 

Two additional comments must be made regarding the NICE experiment. First, notice 

that figures 5.7-5.10 more closely resemble the instantaneous state of the CNTL experi- 

ment depicted in figures 4.22-4.23 than the mean steady state shown in figures 4.13-4.16. 

This resemblance exists because the NICE experiment is steadier than the CNTL ex- 

periment; therefore, important details are not lost when time-averaging. We stress the 

similarity between these figures to highlight the frontal structure of the eyewall discussed 

in section 4.2.2.5. As shown in figures 5.7a and 5.8a, the shear across the inner edge of 

the eyewall is 45 m s_1 km-1, while the temperature gradient is 10 C km-1. Dynamically, 

this structure translates to a large moist potential vorticity (MPV) anomaly of 400 PVU, 

as shown in figure 5.10c. Second, notice in figure 5.7c that the updraft appears to accel- 

erate above the melting level. This acceleration is not due to the buoyancy produced by 

freezing condensate, as in the CNTL experiment, but is an artifact of the time-averaging. 

While the upper-level portion of the eyewall updraft is extremely steady, the position of the 

low-level updraft oscillates radially with the variations of the supergradient outflow shown 

in in figure 5.7a. The time-averaging then damps the magnitude of the low-level updraft 

but preserves the magnitude of the upper-level updraft, causing an apparent acceleration 

of the updraft above about 5 km. 

The NOTV experiment indirectly verifies that the stratiform precipitation and embedded 

secondary eyewalls limit tropical cyclone intensity.   Returning to figure 5.5, we see that 



129 

(a) NICE V     (m/s)    [A=10.0] 

E 

120:00:00.0 - 240:00:00.0 

■ ■^]- 

<^<<.«<<«<< <«(< i < t < (.< «T^<Tt (<■<<<<(■( < n (<■( < 
80 100 120 140 

(b) NICE U     (m/s)    [A= 5.0] 120:00:00.0 - 240:00:00.0 

E 

E 

40 60 80 

W      (m/s)    [A= 2.0] 

100 120 140 

120:00:00.0 - 240:00:00.0 

TF 
2|° 

i  i u • \< ■    Hw i_ u«- ■0-'-• 

; v /\\ 
- 9jS~ - - _ _ _ __ 

'*>> . 
\ 

 . *c -TT6;' 

I" \* J 

W   .   XL?'   A« 
\ ■   iJ 

.i ^      "v ° 
\ <  V      '        \ 

Is- :u;r' 
,S.i       ,'1° '      \ \ 
i; 

■ ■i liii 
1   ) 

I   v 
; 

\  . 

J 
40 60 80 100 120 140 

r    (km) 

Figure 5.7: NICE Experiment — Same as figure 4.13 but for 120-240 hour time-average. 
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Figure 5.8: NICE Experiment — Same as figure 4.16 but for 120-240 hour time-average. 



131 

(o) NICE TERM VEL (m/s) [&= 1.0] 120:00:00.0 - - 240:00:00.0 

15 

if'x ^S 
ijf 

i 

iii 
q'q 

i 
- 

. t   i    ^ - 
b 10 I;< \ 1 I — 

N 

5 m 

It        ll 

I'V />] 
1 

1 

1 j 

— 

0 I'M i .    .i   .    . - 
80 

(b) NICE 

40 60 

PRECIP RATE (mm/hr)   [&=50.0] 

100 120 140 

120:00:00.0 - 240:00:00.0 

E    ,o- 

40 60 80 

r    (km) 

PRECIP MIX RATIO (g/kg) 

.1 0.5 1 

CLOUD MIX RATIO (> 0.1  g/kg) 

' I 

Figure 5.9: NICE Experiment — Same as figure 4.19 but for 120-240 hour time-average. 



132 

a) NICE Z-VORTICITY (1.E-3 /s)   [A=10.0] 120:00:00.0 - 240:00:00.0 
—i—' r7T—'—i   - _'o-' — i_ '     '—1—i—' U— _!—i—""" 

15 

I     '0 

ofc 

cO- 

I 1       L 

f /'I 

■ ^-. 

—   — 0 

0 20 

(b) NICE 

40 60 80 

VIRT POT TMP (K)    [A=10.0] 

100 120 140 

120:00:00.0 - 240:00:00.0 

ira 
-370- 

-■310- 

0 20 40 60 80 

(c) NICE MOIST PV(-bg) (PVU)    [A=50.0] 

100      120      140 

120:00:00.0 - 240:00:00.0 

tn '--^y- 

100 120 140 

Figure 5.10: NICE Experiment — Same as figure 4.20 but for 120-240 hour time-average. 



133 

NOTV V    (-bg) (m/s)    [A=1Q.O]      00:00:00.0-240:00:00.0 
I I I 

'.. ..   :,„ .=== 1"i5'v'öo 

 .v-."~"-" ^g- 

*--_ _ -Txur 

I    . 

=>,-        I  - 

I    . 

I   _ 

80 100 

Figure 5.11: NOTV Experiment — Same as figure 4.5. 

the NICE and NOTV experiments are notably similar, except that the NOTV experiment 

requires an additional 18 hours to attain its steady-state intensity, and is slightly weaker by 

10-15 m s_1 and 5-10 hPa. In both of these experiments, the precipitation is not advected 

away from the eyewall but rapidly falls from the sloping updraft. Without the stratiform 

precipitation, it is impossible for secondary eyewalls to form; thus, the latent effects of ice 

alone cannot explain the significant differences between the NICE and CNTL experiments. 

As further proof, we compare figures 4.5 and 5.6 to figure 5.11, the Hovmöller diagram 

of the surface tangential wind speed for the NOTV experiment. Initially, the NOTV 

experiment develops like the CNTL experiment, with unsteady contraction of the initial 

primary eyewall and the formation of an intense center vortex. Eventually, however, the 

NOTV experiment develops like the NICE experiment, with a relatively steady primary 

eyewall and no secondary eyewalls. Thus, we determine that the ice microphysics has 

almost no effect on intensity, unless the ice is ejected outward away from the eyewall to 

form a broad region of stratiform precipitation. 
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Figure 5.12: NILE Experiment — Same as figure 4.5. 

The NILE experiment completes the ice sensitivity experiments and demonstrates that, 

even without ice latent effects, the mesoscale downdrafts driven by the stratiform precipi- 

tation continue to generate secondary eyewalls, which limit the tropical cyclone intensity. 

Figure 5.5 shows that the steady-state intensity of the NILE experiment, which does not 

include ice, is nearly identical to the CNTL experiment, which does include ice. Figures 4.5 

and 5.12, the Hovmöller diagram of the surface tangential wind speed for the NILE ex- 

periment, further show the similarity between the two experiments. Initially, the inclusion 

of ice in the CNTL experiment produces more rapid intensification and the formation of 

the central vortex; however, beyond 120 hours, the two experiments attain nearly identical 

steady-state intensities. Precipitation drag and evaporative cooling are sufficient to drive 

the mesoscale downdrafts, indirectly limiting the intensity of the tropical cyclone. Ice then 

merely enhances the downdraft, as seen in the NOTV experiment. 

In conclusion, there are several distinct differences between our sensitivity experiments 

on ice microphysics and those of Willoughby et al. (1984) and Lord and Lord (1988). 

Comparing figures 1.1 and 5.5, we see that our simulated tropical cyclone develops more 
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slowly and becomes much more intense. For instance, the NICE experiment in figure 5.5, 

which is comparable to the W experiment in figure 1.1, reaches a steady state 75 hours later, 

with vmax nearly 100 m s_1 greater and pmin approximately 110 hPa lower. Furthermore, 

there is almost no difference in the mean steady-state vmax of the FR, W, and I experiments 

in figure 1.1, whereas vmax varies by as much as 50 m s_1 or more between the CNTL, 

NICE, NOTV, and NILE experiments in figure 5.5. Finally, and most importantly, our 

results show that the stratiform precipitation is the primary factor modifying the intensity 

between the CNTL and NICE experiments. The latent effects of ice are a secondary effect, 

unlike that proposed by Willoughby et al. (1984) and Lord and Lord (1988). 

5.2.2    Precipitation Physics (NWMO/PSAD) 

One distinctive attribute of our model is its thorough bulk formulation of the precipitation 

dynamics and thermodynamics. Specifically, the model equations (2.5)-(2.6) conserve the 

total momentum and entropy, and contain terms representing the vertical fluxes of momen- 

tum and entropy by precipitation. In contrast, virtually all previous axisymmetric tropical 

cyclone models conserve only the dry or moist air momentum and entropy, and neglect the 

vertical fluxes of precipitation momentum and entropy (i.e., pseudoadiabatc). The addi- 

tional precipitation microphysics in our model may significantly affect the development of 

the simulated tropical cyclone. 

We can easily evaluate the sensitivity of the simulated tropical cyclone to the complete 

bulk precipitation microphysics by neglecting the unique precipitation-related terms in the 

model predictive equations (2.58)-(2.61). First, in the NWMO experiment, we neglect the 

terms involving W in (2.58)-(2.60). The resulting momentum equations are then nearly 

identical to those used in past models (Willoughby et al., 1984; Rotunno and Emanuel, 

1987; Zeng, 1996). Recall from section 2.3, however, that (2.58)-(2.60) are the components 

of the approximate form of (2.5). Despite the intermediate level of approximation, we 

may still learn something from the experiment. Second, in the PSAD experiment, we 

again neglect the terms involving W in (2.6). The resulting entropy equation is then 

pseudoadiabatc, in the absence of other sources or sinks of entropy. 
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Figure 5.13: PSAD and NWMO Experiments — Same as figure 4.3. 
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The results of the NWMO and PSAD experiments demonstrate that the additional terms 

in the momentum equations have relatively little impact on tropical cyclone development, 

whereas the additional terms in the entropy equation significantly alter both the intensifi- 

cation and steady-state intensity. Figure 5.13 shows the evolution of the simulated tropical 

cyclone in terms of vmax and pmin for the CNTL, NWMO, and PSAD experiments. Imme- 

diately, we see that the NWMO and CNTL experiments are nearly identical, except that 

the NWMO experiment intensifies more slowly. This result is not unexpected considering 

that the relative momentum of the precipitation (i.e., prW) is three orders of magnitude 

smaller than the total momentum of the mass moving with the parcel (i.e., pw), as dis- 

cussed in section 2.3; therefore, variations of the precipitation momentum have little affect 

on the total momentum. In contrast, the PSAD and CNTL experiments differ substan- 

tially, suggesting that the precipitation entropy significantly affects the total entropy. For 

instance, the PSAD tropical cyclone rapidly intensifies from 60 to 90 hours, attaining a near 

steady state 70 hours earlier than in the CNTL experiment. Furthermore, the steady-state 

intensity in the PSAD experiment is approximately 25 m s_1 greater and 35 hPa lower as 

compared to the CNTL experiment. Recall that early rapid intensification occurred in the 

simulations of Willoughby et al. (1984) and Lord and Lord (1988), as shown in figure 1.1. 

The differences between the PSAD and CNTL experiments result from changes in the 

boundary layer entropy, or equivalent potential temperature (0e). Figures 5.14 and 5.15 

show the Hovmöller diagrams of the surface tangential wind speed and 6e at a height of 

1 km for the PSAD experiment. Comparing figures 4.6 and 5.15, we see that the 9e of 

inflowing air is 10 K warmer beneath the eyewall in the PSAD experiment than in the 

CNTL experiment. Furthermore, comparing figures 4.5 and 5.14, we find that the PSAD 

experiment does not develop secondary eyewalls. In the PSAD experiment, precipitation 

does not transport entropy from the boundary layer through the lower boundary; therefore, 

the total entropy of downdraft air is greater than in the CNTL experiment, which from 

equation (2.10) requires a higher temperature. As a result, the negative buoyancy of the 

downdrafts is reduced, inhibiting development of the secondary eyewall. Given this result, 

it is unclear why other pseudoadiabatc models are able to produce secondary eyewalls 

(Willoughby et al., 1984, e.g., ). 
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Figure 5.14: PSAD Experiment — Same as figure 4.5. 
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Figure 5.15: PSAD Experiment — Same as figure 4.6. 
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Figure 5.16: CDIF and SDIF Experiments — Same as figure 4.3. 

5.2.3    Diffusion (SDIF/CDIF) 

As discussed in section 2.1.3.2, other axisymmetric tropical cyclone models have used dif- 

fusion to parameterize the asymmetric mixing by horizontal, two-dimensional turbulence. 

In contrast, our model does not parameterize any turbulent mixing but applies a numerical 

filter to control the accumulation of signal at the resolution limit. To better understand 

the impact of horizontal diffusion on the tropical cyclone development, we performed two 

experiments. First, in the CDIF experiment, we use simple V2 diffusion with a constant 

diffusion coefficient of v = 103 m2 s_1. Second, in the SDIF experiment, we use the 

Smagorinsky diffusion defined by equation (2.22). The deformation (D) is that defined 

by Rotunno and Emanuel (1987). According to Ooyama (2001), both types of physical 

diffusion dominate over the numerical diffusion. 
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Both the CDIF and SDIF experiments demonstrate that diffusion only slightly modifies 

tropical cyclone development. Figure 5.16 shows the evolution of the simulated tropical 

cyclone in terms of vmax and pmin for the CNTL, CDIF, and SDIF experiments. In 

addition, figures 5.17 and 5.18 show the Hovmöller diagrams of the surface tangential 

wind speed for the CDIF and SDIF experiments, respectively. In both experiments, notice 

that the central vortex is almost completely eliminated by the diffusion. Furthermore, the 

development of the SDIF experiment is closer to the CNTL experiment than the CDIF 

experiment. As expected, the constant diffusion of the CDIF experiment disperses the 

tangential momentum uniformly across the domain. Conversely, the focused diffusion of 

the SDIF experiment, which is greatest across areas of large shear, disperses the tangential 

momentum primarily along the inner edge of the eyewall. Also, the CDIF tropical cyclone 

does not maintain a steady state but gradually weakens. Specifically, from 180 to 240 hours, 

the average vmax in the CDIF experiment weakens by 10-20 m s_1. Most importantly, in 

neither experiment does the diffusion of tangential momentum accelerate the tangential 

wind field inside of the eye to near solid body rotation. Instead, a u-shaped wind profile 

exists inside of the eye. The implications of this result will be discussed in the next chapter. 
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Figure 5.18: SDIF Experiment — Same as figure 4.5. 



Chapter 6 

DISCUSSION 

The most exciting phrase to hear in science, the one that heralds new discoveries, 
is not "Eureka!" (I found it) but "That's funny ..." 

Isaac Asimov 

In the last two chapters, we performed a control experiment and a series of sensitivity 

experiments to better understand the processes that regulate the intensity of a symmetric 

tropical cyclone. From these experiments, we discovered that our model produces a more 

intense tropical cyclone than the current empirical and theoretical evidence might support. 

For instance, the most intense tropical cyclone on record was Typhoon Tip (1979) (Dunna- 

van and Diercks, 1980), with estimated sustained winds of 85 m s_1. By comparison, our 

control simulation develops a near steady-state tropical cyclone with maximum tangential 

wind speeds of about 107 m s_1. Because tropical cyclones with similar intensity have 

developed in past axisymmetric models (Yamasaki, 1977a, 1983; Bister, 1996; Zeng, 1996), 

we conclude that the intensity of our simulated tropical cyclone is not erroneous but is con- 

sistent with the approximate physics of the model. By approximating the physics, however, 

we have clearly omitted essential processes that limit tropical cyclone intensification. 

In this chapter, we discuss in greater detail several of the limiting processes that are either 

included or excluded from the model. To begin, we compare our explanation for the forma- 

tion of secondary eyewalls and the evolution of eyewall replacement cycles to past theories 

involving conditional and symmetric instability (section 6.1). Next, we examine the frontal 

structure of the eyewall, and consider the implications of this structure to barotropic insta- 

bility and horizontal mixing (section 6.2). Finally, we briefly discuss the critical sensitivity 

of the tropical cyclone intensity to the boundary layer moisture (section 6.3). 
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6.1    Secondary Eyewalls and Eyewall Replacement Cycles 

6.1.1    Observational Evidence and Current Theory 

Both composite radar images and aircraft observations have clearly revealed the existence 

of multiple eyewalls encircling intense tropical cyclones (Willoughby et al., 1982). For 

instance, during an aerial weather reconnaissance flight through Typhoon Sarah (1956), 

Fortner (1958) was the first to observe, as he put it, an "eye within an eye". This intriguing 

feature has since been detected in many tropical cyclones (Jordan and Schatzle, 1961; 

Black et al., 1972; Holliday, 1974; Black and Willoughby, 1992). In fact, after analyzing 

flight-level data from aircraft traverses through Hurricanes Anita (1977), David (1979), and 

Allen (1980), Willoughby et al. (1982) suggested that secondary eyewalls may be "common" 

to intense symmetric tropical cyclones. 

More importantly, the observational evidence also suggests that intensification of the trop- 

ical cyclone often ceases, following the formation of a secondary eyewall. For example, 

from observations of Hurricane David (1979), Willoughby et al. (1982) discovered that the 

formation and contraction of the secondary eyewall around the primary eyewall, or eyewall 

replacement cycle, marked the end of a period of deepening. In addition, they noted that 

each eyewall coincided with a maximum in the tangential wind profile and that this max- 

imum increased as the eyewall contracted. In particular, the digital radar composite of 

David between 1045 and 1131 GMT on 30 August showed two distinct symmetric eyewalls 

(see figure 5, Willoughby et al). The corresponding maximum tangential wind speeds of 

the inner and outer eyewall were approximately 48 m s_1 at 19 km and 43 m s"1 at 39 km, 

respectively. Within 24 hours, however, only one eyewall remained, with a maximum tan- 

gential wind speed of 61 m s_1 at 19 km (see figure 8, Willoughby et al). During this same 

time period, the deepening of the minimum surface pressure ceased. Later observational 

studies further verified that eyewall replacement cycles modulate the intensity of tropical 

cyclones (Willoughby, 1990; Black and Willoughby, 1992). 
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Presently, we do not completely understand why secondary eye walls form nor why eyewall 

replacement cycles occur. Willoughby et al. (1982) speculated that they may form due 

to internal gravity waves, surface convergence along the leading edge of outflow bound- 

aries, or symmetric instability of the upper-level vortex. Several numerical studies have 

since attempted to confirm these and other mechanisms (Willoughby, 1979; Shapiro and 

Willoughby, 1982; Willoughby et al., 1984; Zeng, 1996). 

To determine the physical mechanism of eyewall contraction, Willoughby (1979), and 

Shapiro and Willoughby (1982) used Eliassen's (1952) transverse circulation equation to 

investigate the response of a balanced vortex to point sources of heat and momentum. 

They found that the heat source produced two counter-rotating secondary circulations. 

The horizontal extent of these circulations differed in response to the local Rossby number 

(see figure 9, Shapiro and Willoughby), which is a function of the inertial stability. For 

instance, radially inward from the eyewall heat source, the inertial stability was relatively 

large due to the cyclonic shear of the vortex. As a result, the secondary circulation in- 

side the eye was horizontally constrained to lie along the inner edge of the eyewall. The 

corresponding subsident warming and hydrostatic surface pressure decrease were similarly 

constrained, causing the maximum height and tangential wind tendencies to form immedi- 

ately inside the radius of maximum tangential wind. In response to this configuration, the 

tangential wind maximum and eyewall contracted (see figure 10, Shapiro and Willoughby). 

Similar tendencies were identified in the observational data of Willoughby et al. (1982). 

While Shapiro and Willoughby also theorize that the superposition of secondary circula- 

tions associated with concentric eyewalls may explain why the outer eyewall replaces the 

inner, they do not propose a mechanism for the formation of secondary eyewalls. 

Using an axisymmetric nonhydrostatic tropical cyclone model with sophisticated precipi- 

tation microphysics, Willoughby et al. (1984) verified the eyewall contraction mechanism 

proposed by Shapiro and Willoughby (1982) and investigated the formation mechanism of 

secondary eyewalls. Sensitivity experiments with and without the ice microphysics demon- 

strated that the inclusion of ice caused numerous secondary eyewalls to develop, contract, 
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and occasionally replace the primary eyewall. Prom these experiments, Willoughby et al. 

proposed a possible mechanism for secondary eyewall formation involving the combina- 

tion of low-level convective instability and upper-level symmetric instability. Specifically, 

low-level convective instability is generated as the latent cooling from melting condensate 

overlies warming from the surface fluxes. In general, this instability does not produce moist 

convective ascent, because it is capped by the subsidence of the secondary circulation ex- 

tending outward from the eyewall. However, if the gradual low-level ascent resulting from 

symmetric instability of the upper-level outflow overcomes the descent of the secondary 

circulation, deep moist convection develops and forms the secondary eyewall. Using the 

discriminant of Eliassen's (1952) transverse circulation equation, Willoughby et al. demon- 

strated that the outflow is dry-symmetrically unstable (see figures 11 and 12, Willoughby 

et al.); however, they did not provide sufficient evidence to prove that this symmetric 

instability represents a mechanism leading to the formation of secondary eyewalls. 

Motivated by Willoughby et al.'s (1984) conjecture, Zeng (1996) sought to prove, at least 

within the framework of another axisymmetric nonhydrostatic model, that symmetric in- 

stability is a necessary precursor to the formation of secondary eyewalls. For simplicity, 

Zeng approximately evaluated the symmetric instability of the vortex in terms of the in- 

ertial instability. According to his simulations, the initial shallow convection is driven by 

low-level convective instability (see figure 7, Zeng). As this convection ascends, it advects 

absolute angular momentum upward, producing a local maximum of angular momentum. 

Radially inside of the maximum, the inertial stability of the flow increases, whereas out- 

side of the maximum, the flow becomes inertially unstable. Deep moist convection is then 

driven upward in response to the upper-level divergence forced by the inertial instability. 

Zeng concludes that the deep convection of secondary eyewalls cannot develop without 

inertial, or symmetric, instability. However, his model does not include ice; therefore, the 

simulated moist convection does not experience the additional buoyant acceleration forced 

by the release of latent heat during the freezing of condensate (Willoughby et al., 1984). 
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6.1.2    Comparison of Current Theory with Our Results 

Our results indicate that symmetric instability is not necessary for the initial development 

of the secondary eyewall. Both Willoughby et al. (1984) and Zeng (1996) argue that, 

given sufficient low-level convective instability, secondary eyewalls form when upper-level 

symmetric instability induces low-level ascent. The results presented in section 4.2.1.4 

show that the initial convection of the secondary eyewall was not forced by symmetric 

instability, but by low-level convergence and the additional buoyancy generated by freezing 

condensate. This does not imply, however, that symmetric instability does not exist or is 

not important. 

Although symmetric instability is not responsible for the initial development of the sec- 

ondary eyewall, it does force subsequent convection, which results in the discrete inward 

propagation of the existing secondary eyewall (see figures 4.10-4.12). As the updraft of 

the secondary eyewall vertically advects lower-tropospheric air with high angular momen- 

tum, the middle and upper troposphere become inertially unstable, resulting in localized 

overturning (Ooyama, 1966). Simultaneously, the superposition of the inflow from the sec- 

ondary circulation of the primary eyewall and the convective outflow from the secondary 

eyewall produce net radial convergence and new moist convection inward of the secondary 

eyewall. Additional ascent, forced by the middle- and upper-level inertially unstable flow, 

reinforces the new convection. Similar periodic developments lead to the discrete inward 

propagation of the secondary eyewall. Eventually, the discrete contraction ceases as the 

convergence associated with the tangential wind maximum overcomes that produced by 

the convective outflow. Following this transition, the contraction follows a model similar 

to that proposed by Shapiro and Willoughby (1982). 

The disparity between our results and those of Zeng (1996) may be due, at least in part, 

to poor spatial resolution. If the model grid spacing is too coarse, the Reynolds number 

of the simulated flow will be too small; thus, the simulated moist convection will develop 

very slowly. In this context, we define the Reynolds number by 
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wherein U is a representative wind speed of the simulated flow (e.g., U ~ 50 m s_1), Ax is 

the grid spacing, j is the order of the numerical or physical diffusion (e.g., j = 1 for Fickian 

diffusion or j = 3 for hyper-diffusion), and i/,- is the effective viscosity (see appendix F). 

For example, Zeng uses an expandable grid with a relatively fine grid spacing of 1.3 km 

near the central axis; however, his grid spacing expands to 11 km at the radius where the 

secondary eyewall forms. Because the Reynolds number is relatively small at this radius 

(i.e., Re ~ 102-103 with v\ = 103 m2 s-1), the moist convection of the secondary eyewall 

requires 24 hours to ascend through the depth of the troposphere. Compare this to the 

1-km horizontal grid spacing and 1-hour ascent illustrated in figures 4.10-4.12. In this 

model, the Reynolds number is an order of magnitude larger (i.e., Re ~ 103-104 with 

i/3 = 5x 1012 m6 s_1). According to Ooyama (2001), the horizontal grid spacing must be 

2 km or less for the moist convection to develop "realistically". When the grid spacing is 

larger than 2 km, the slowly evolving convection is strongly influenced by the weak ascent 

produced by the symmetric instability. In contrast, when the grid spacing is less than 

2 km, the rapidly evolving convection is influenced more by the conditional instability of 

the lower and middle troposphere than by symmetric instability of the upper troposphere. 

Our results not only suggest that secondary eyewalls form in the absence of symmetric in- 

stability but in the absence of ice latent effects as well. Willoughby et al. (1984), and Lord 

and Lord (1988) performed two ice experiments similar to our NICE and NOTV experi- 

ments, as presented in section 5.2.1. From these, they concluded that the "thermodynamic 

input [of ice] by itself is a noticeable, but secondary effect." However, this conclusion was 

based on two experiments that did not produce a broad region of stratiform precipitation. 

In both experiments, the secondary eyewalls formed unrealistically close to the primary 

eyewall. Our NILE experiment extends the results of Willoughby et al. (1984), and Lord 

and Lord (1988) by excluding the latent effects of ice, while including the temperature- 

dependent terminal velocity. The results of this experiment show that secondary eyewalls 
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form within a broad region of stratiform precipitation in the absence of ice latent effects. 

When ice latent effects were included, the development of secondary eyewalls was enhanced 

by the additional negatively-buoyant descent and subsequent low-level convergence driven 

by the melting condensate. 

Although the theories discussed in the last section address the destructive effects of the 

secondary eyewall on the primary eyewall, none of them consider the self-destructive ef- 

fects of the primary eyewall on itself. Shapiro and Willoughby (1982) proposed that the 

superposition of the secondary circulations induced by the primary and secondary eyewalls 

is dominated by that of the latter; thus, the primary eyewall is eventually eliminated and 

replaced by the secondary eyewall. Willoughby et al. (1984), and Samsury and Zipser 

(1995) further suggest that the outflow from a secondary eyewall or from the surrounding 

rainbands, disturbs the boundary layer inflow into the primary eyewall. Our results, as 

presented in figures 4.7-4.9, indicate that the mesoscale downdraft induced by the precipi- 

tation beneath the stratiform region of the primary eyewall also disturbs the boundary layer 

inflow by advecting air with low entropy and angular momentum from the mid-troposphere 

into the boundary layer. As a result, the primary eyewall is partially the instrument of its 

own demise. During brief periods, for instance, the primary eyewall is observed to weaken 

and often reintensify, while the secondary eyewall is absent or far removed. A similar os- 

cillation of the primary eyewall was recently observed during Hurricane Bonnie (D. Cecil, 

2000, personal communication). 

The formation of secondary eyewalls is also sensitive to the entropy flux by precipitation. 

If we assume that the precipitation process is pseudoadiabatic [i.e., neglecting the precipi- 

tation flux term in equation (2.6) as in experiment PSAD], secondary eyewalls do not form. 

When the precipitation does not materially conserve its entropy, no entropy passes through 

the lower boundary; therefore, the entropy of the downdrafts must increase. As a result, 

the negative buoyancy and low-level convergence is dramatically reduced, precluding the 

formation of secondary eyewalls. 

Finally, in direct contradiction to our results, one might argue that including ice latent 

effects should produce a more intense tropical cyclone, due to the additional release of latent 
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heat. However, one must consider not only the magnitude of the latent heating but its 

vertical location as well. Using Eliassen's (1952) transverse circulation equation, Shapiro 

and Willoughby (1982) diagnosed the secondary circulation resulting from a point source 

of heat. Prom their results (see figure 9, Shapiro and Willoughby), we see that a low-level 

source of latent heating (e.g., condensation) produces a shallow layer of inflow near the 

surface, with a deep layer of outflow above. Furthermore, the magnitude of the inflow and 

outflow decrease rapidly away from the source. Thus, if the heat source is elevated (e.g., 

freezing), it produces very little surface inflow. Keep in mind that the tropical cyclone 

will only intensify if the low-level inflow advects entropy and angular momentum into the 

storm core. Therefore, while freezing may significantly enhance the mid-level inflow, it will 

have little effect on the surface inflow that maintains or intensifies the tropical cyclone. 

6.2    Asymmetries 

6.2.1    Sensitivity to the Horizontal Grid Spacing and Physical Diffusion 

Ideally, the solution to any computer model should be largely independent of the numerics. 

Yet, in chapter 5, we discovered that our model is extremely sensitive to the horizontal 

grid spacing. In particular, as the grid spacing decreased from 16 km to 0.5 km, we found 

that the simulated tropical cyclone became smaller and more intense, with convergence of 

the solution for grid spacings less than 2 km (see figure 5.1). A similar sensitivity appears 

to exist in the cumulative results of past axisymmetric tropical cyclone simulations. For 

instance, figures 6.1a and b show the magnitude and radius, respectively, of the steady- 

state maximum tangential wind speed of the solutions to 13 different axisymmetric tropical 

cyclone models (see appendix A for details). Similar to our model, those models with finer 

grid spacing tend to produce smaller, more intense tropical cyclones. 

One might argue that the trends depicted in figure 6.1 are trivially obvious. In other words, 

as the grid spacing decreases, we certainly can expect to resolve finer details, including 

a smaller eye.  Nevertheless, if our intent is to understand the fundamental dynamics of 
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the tropical cyclone eye, we must prevent the numerics from contaminating the essential 

physics, otherwise the conclusions drawn from the results will be questionable. For exam- 

ple, Rotunno and Emanuel (1987) used an axisymmetric nonhydrostatic primitive equation 

model, with 15 km horizontal grid spacing, to validate the steady-state intensity model of 

Emanuel (1986). They concluded that the steady-state solutions of the two models were 

in excellent agreement. In apparent contradiction to this conclusion, however, Bister and 

Emanuel (1998) used a slightly modified version of the same primitive equation model with 

7.5 km horizontal grid spacing, and simulated a tropical cyclone that was nearly a third 

more intense than that simulated by Rotunno and Emanuel. More recently, Persing and 

Montgomery (2001, personal communication) have verified the sensitivity of Rotunno and 

Emanuel's model to horizontal grid spacing. 

The problem of inadequate horizontal resolution is only aggravated by the physical diffusion 

used to control numerical noise. All of the models illustrated in figure 6.1 use some form 

of physical diffusion [e.g., see equation (2.22)] to control the numerical noise that develops 

at the resolution limit. As shown in section 5.2.3, this diffusion is obviously most effective 

at the smallest resolved scales (i.e., 2-4 Ar). Therefore, if the grid spacing is too coarse, 

important fine details of the eye and eyewall will be eliminated. Even with fine grid spacing, 

the CDIF and SDIF experiments verify that relatively small scale details are either diffused 

or eliminated. 

We belabor this point to emphasize that important dynamic processes of the tropical 

cyclone eye and eyewall are obscured if the horizontal grid spacing is too coarse and the 

physical diffusion is too large. In particular, we used relatively fine horizontal grid spacing 

and minimal numerical diffusion to reproduce the isolation and conservation of mass within 

the eye, as observed by Willoughby (1998), and the frontal collapse of the eyewall, as 

theorized by Emanuel (1997). Ultimately, this structure has distinct implications to the 

barotropic stability of the vortex that no axisymmetric tropical cyclone model can properly 

simulate. 
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6.2.2    The Eye as a Containment Vessel 

Conflicting observations of the tropical cyclone eye have stimulated an interesting debate 

concerning the existence of mixing between the eye and eyewall. Using eye soundings from 

Hurricanes Jimena (1991) and Olivia (1994), Willoughby (1998) shows that the airmass 

entrapped by the developing eye "has a long lifetime inside the eye, experiences only a few 

kilometers total subsidence, and mixes only weakly with the moist air from the eyewall." 

In contrast, Kossin and Eastin (2000) used radial profiles of tangential wind speed and 

vorticity across Hurricanes Diana (1984), Elena (1985), Andrew (1992), and Hortense 

(1996), to show that mixing between the eyewall and eye is relatively common and often 

occurs as the tropical cyclone approaches its peak intensity. 

In agreement with Willoughby's (1998) observations, the evolving eye in our control experi- 

ments is comparable to a semi-permeable containment vessel. When the eyewall forms, the 

troposphere is divided into two airmasses (see figures 4.7 and 4.9). The airmass outside of 

the eyewall is theoretically infinite, due to the open outer boundary condition, whereas the 

airmass inside of the eyewall is isolated, due to the symmetric boundary condition of the 

center. To conserve mass, the contracting eyewall entrains air from the shrinking volume 

of the eye and exports it to the outer airmass. In contrast, there is almost no transfer of 

mass from the eyewall into the eye. 

The thermodynamic structure of the eye adjusts to the intensifying vortex through the 

inward propagation of inertia-gravity waves. These waves produce convergence and net 

subsidence inside the eye. The resulting adiabatic warming restores the thermal balance 

of the evolving vortex. Eventually, the tropical cyclone transitions to a near steady state. 

After this point in time, the inertia-gravity wave activity virtually ceases and the eye 

airmass is relatively stagnant, as the vortex remains in approximate thermal wind balance. 

Note that this result is also consistent with Willoughby's (1979) observation that the eye 

subsidence is better correlated with the rate of change of intensity than with the intensity 

itself. Even though our results generally support Willoughby's (1998) conclusion that the 

eye is a containment vessel, we still have not explained the disparity with the observational 

evidence presented above. 
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6.2.3    Frontal Structure of the Eyewall 

Emanuel's (1997) theory describing the frontal collapse of the eyewall may explain why the 

observed structure of the eye varies during the lifetime of a tropical cyclone (Kossin and 

Eastin, 2000). Using three idealized models, each characterized by their amount of hori- 

zontal diffusion, Emanuel demonstrated that the tropical cyclone eyewall is frontogenetic 

and that the maximum intensity is unattainable without diffusive mixing between the eye 

and eyewall. Specifically, with the zero-diffusion model, he showed that a tropical cyclone 

intensifies in the absence of any mixing between the eye and eyewall. To maintain gradient 

balance, the thermally-indirect secondary circulation of the eyewall warms the eye. This 

warming uniformly raises the temperature profile of the eye to that of the eyewall, creating 

a uniform hydrostatic pressure decrease and a stagnant tangential wind field in the eye. A 

frontal discontinuity thus develops between the eyewall and the surrounding environment. 

Empirically, however, such discontinuities are unobserved and naturally prevented by dif- 

fusive processes (e.g., turbulent mixing). With the other two models that include diffusion, 

Emanuel further showed that horizontal diffusion of momentum inward from the eyewall 

accelerates the tangential wind speed of the eye. To maintain gradient balance, the sec- 

ondary circulation then intensifies to further warm the column and decrease the pressure, 

which also increases the surface entropy. In these models, the maximum tangential wind 

speed increases more rapidly and has a greater magnitude than in the zero-diffusion model. 

Emanuel argues that the greater magnitude results from the diffusion of momentum inside 

the radius of maximum wind, which increases the tangential wind speed and the surface 

entropy flux. With increased surface entropy in the storm core, the moist convection of 

the eyewall increases and the tropical cyclone intensifies. 

Our results verify the frontal collapse theorized by Emanuel (1997) but not the greater 

intensity resulting from horizontal diffusion. To demonstrate this, we refer back to the 

horizontal grid spacing experiments of section 5.1.1. When the grid spacing is fine (i.e., 

0.5-2 km), the numerical diffusion is horizontally restricted and the frictional convergence 

inside the radius of maximum wind compresses the structure of the eyewall, as shown 
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in figures 5.2a and 5.3a. This compression, in combination with the adiabatic warming 

of the eye by the secondary circulation, gives the eyewall its frontal appearance. Notice 

that, in agreement with Emanuel's theory, the eye temperature is equal to that in the 

eyewall at each level. As a result, there is almost no horizontal pressure gradient and the 

tangential wind speeds are nearly zero in comparison to the eyewall. In contrast, when 

the grid spacing is coarse (i.e., 4-16 km), the numerical diffusion obscures the eyewall 

structure. This diffusion mixes momentum into the eye, accelerating the tangential wind 

profile to near solid body rotation, as seen in figure 5.2b. The resulting gradient imbalance 

drives a thermally-indirect secondary circulation, in addition to that produced by the 

eyewall convection, that warms the eye above the temperature of the eyewall, as shown in 

figures 5.2b. Hydrostatically, the additional warming further decreases the surface pressure. 

In summary, while the extreme value of vmax develops independent of the eye, the extreme 

value of pmin depends on the acceleration of the eye tangential wind field to near solid body 

rotation by the diffusion of angular momentum from the eyewall into the eye. However, 

in contrast to Emanuel's theory, figure 5.1 shows that vmax actually decreases as the grid 

spacing and corresponding diffusion increase. 

One possible explanation for the conflicting observations may be that the eye passes 

through two different stages during its lifecycle. Initially, the convection of the eyewall 

isolates the airmass of the eye, and clears and warms it through the inward propagation of 

inertia-gravity waves. Simultaneously, frontogenesis collapses the structure of the eyewall 

toward a discontinuity. Eventually, an instability must develop to mix away this disconti- 

nuity. Some have argued that this mixing must be due to the three-dimensional turbulent 

eddies along the inner edge of the eyewall; however, the horizontal scale of these eddies is 

relatively small in comparison to the size of the eye. Instead, we theorize that the mixing is 

due to two-dimensional turbulence resulting from the barotropic instability of the vortex. 

6.2.4    Barotropic Instability and Horizontal Mixing 

Of all the assumptions discussed in chapter 2, axisymmetry is the most restrictive and 

problematic. Recent observational and theoretical studies suggest that asymmetries modify 
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the tropical cyclone intensity and eye structure. For example, Kossin and Eastin (2000) 

identified a close correlation between changes in the intensity of Hurricanes Diana (1984) 

and Olivia (1994) to rapid changes in the kinematic and thermodynamic structure of each 

hurricane's eye. They speculate that these rapid changes were due to mixing between the 

eye and eyewall, triggered by barotropic instability during intensification. Schubert et al. 

(1999) theoretically demonstrated this same mixing process using an unforced barotropic 

nondivergent model. They found that enhanced rings of vorticity, similar to those observed 

by Kossin and Easton, are barotropically unstable. The instability subsequently mixes 

vorticity into the vortex center, accelerating the flow in the eye and decelerating the flow 

in the eyewall, which weakens the vortex [see Schubert et al. (1999) fig. 4]. These mixing 

processes are excluded from the axisymmetric dynamics and therefore have no influence 

on intensity or eye structure. 

To simulate mixing due to asymmetries, previous axisymmetric tropical cyclone models 

used diffusion to crudely parameterized the physics of horizontal mixing. Riehl and Malkus 

(1961) observed that the horizontal diffusion coefficient in Hurricane Daisy (1958) was three 

orders of magnitude larger than the vertical diffusion coefficient. This difference implied 

that horizontal mixing was larger than vertical mixing; however, according to Rosenthal 

(1970a), "a valid formulation for the lateral mixing [was] not at all clear." As a result of 

these observations, the earliest models applied a parameterization with constant diffusion 

coefficients, in which the horizontal coefficient was greater than the vertical. Later, lacking 

any additional physical insight, Rosenthal, Anthes and others assumed that the mixing 

was due to shear instability inside the radius of maximum wind and applied a diffusion 

parameterization based on Smagorinsky's (1963) approach (see chapter 2 for details). Even 

the most recent models use this type of diffusion (Rotunno and Emanuel, 1987; Zeng, 1996). 

Diffusion, however, does not accurately simulate the mixing due to barotropic instability. 

Kossin (2000a) compared the analytical solution of a one-dimensional axisymmetric model 

of vorticity diffusion to the numerical solution of a two-dimensional barotropic model of 

vorticity mixing. He discovered that the peak vorticity in the eyewall is strongly damped 
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when vorticity diffuses into the eye, whereas the peak is nearly conserved when vorticity 

is mixed. This conservation results from the formation and advection of coherent vortices 

that preserve the peak vorticity against dissipation. Furthermore, the amount of diffusion 

is greatest at the smallest resolved scales; therefore, as shown in our CDIF and SDIF 

experiments, diffusion is incapable of efficiently mixing entropy and momentum into the 

center of the eye when the horizonal grid spacing is small relative to the scale of the eye 

and eyewall. 

Whether by diffusion or mixing, vorticity is transfered from the eyewall to the center, 

weakening the vortex. We naturally wonder if vorticity mixing might limit the intensity of 

the control experiment. Since Kossin's (2000a) results indicate that diffusion inaccurately 

captures this process, we chose not to include any diffusion in our control experiment, other 

than that absolutely necessary for numerical stability. Instead, as a first step, we indirectly 

investigate the effects of mixing on our steady-state tropical cyclone using the Schubert 

et al. (1999) barotropic model, initialized with a vorticity (i.e., PV) profile obtained from 

the mean steady-state data of the control experiment. 

Of course, there are significant differences between the two models. Using an axisymmetric 

primitive equation model with moist thermodynamics, we can investigate the generation of 

PV by non-conservative boundary layer and moist convective processes; however, as noted 

above, we cannot accurately simulate horizontal mixing. In contrast, using a barotropic 

model, we can investigate the horizontal mixing that results from an initially unstable 

PV (i.e., vorticity) distribution; however, we cannot simulate the non-conservative pro- 

cesses. Despite these differences and limitations, Schubert et al. (1999) have demonstrated 

that, given an initially symmetric but unstable vorticity distribution, the barotropic model 

reproduces the elementary geometric structures observed in many tropical cyclones. 

As mentioned previously, the Schubert et al. (1999) model simulates the mixing, or non- 

linear advection, resulting from the disturbance of a barotropically unstable vortex. The 

future structure of the vortex is predicted by solving the two-dimensional nondivergent 

vorticity equation 
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Figure 6.2: Azimuthally-averaged a) vorticity and b) tangential wind profiles for the initial 
(solid) and final (dashed) states. 

dt dx       dy 
(6.2) 

The ordinary (V2) diffusion, with u = 15 m2 s_1, is required to damp the cascade of 

enstrophy at the resolution limit. Spatially, (6.2) is solved using the double-Fourier pseu- 

dospectral method on a 200 x 200 km doubly-periodic domain with 512 x 512 equally 

spaced collocation points. After dealiasing, the domain resolves 170 x 170 Fourier modes. 

Temporally, (6.2) is integrated over 10 hours using the fourth-order Runge-Kutta method 

with a 3 s timestep. See the paper by Schubert et al. (1999) for more details. 

To investigate the stability of the control experiment vortex, we initialize the barotropic 

model using the steady-state vorticity obtained from the axisymmetric primitive equation 

model. Figures 6.2a and b show the initial symmetric (solid) and final azimuthally-averaged 

(dashed) vorticity and tangential wind profiles, respectively. From figure 4.20, we see that 
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the maximum MPV anomaly is located in the mid-troposphere. In the barotropic model, 

this MPV is represented by the vorticity profile at a given level; therefore, we initialize the 

model with a symmetric vortex derived from the 180-240 hour average vorticity profile at 

a height of 5 km. This vortex is then perturbed with proportional random noise confined 

to an annulus extending from r = 5 km to r = 15 km. The magnitude of the perturbation 

is one percent or less than the local basic state vorticity. 

The results of the simulation reveal that the vorticity profile obtained from the steady- 

state vortex is barotropically unstable. Figure 6.3 shows the evolution of the vorticity 

field at 0, 0.5, 1, 2, 4, and 8 hours. By 0.5 hours, we see that the initially symmetric 

vortex develops a finite amplitude wavenumber five perturbation. After another 0.5 hours, 

the maximum vorticity in the eyewall has been gathered into five coherent vortices, with 

vorticity filaments forming along the outer edge. Within another hour, the vorticity within 

the coherent vortices mixes into the eye and the peak vorticity initially at the eye center is 

severely deformed. By eight hours, the mixing process has essentially ceased. In the final 

state, the initial maximum vorticity of the center has been eliminated by diffusion and the 

eyewall vorticity is now found in the center. 

The results also demonstrate that mixing vorticity from the eyewall into the eye weakens 

the vortex (Schubert et al., 1999). Comparing figures 6.2 and 6.3, we see that the peak 

vorticity at the center is eliminated and that the vorticity in the eyewall is mixed to the 

center, with only a slight decrease in the peak value from 2.6 x 10~3 to 2.4 x 10-3 s_1. 

As the vorticity is mixed inward, v inside the eye increases, whereas in the eyewall, it 

decreases. For example, at r = 5 km, v increases from 15.0 to 45.0 m s_1. In contrast, 

Vmax hi the eyewall decreases and expands outward from 93 m s_1 at rmax = 14 km to 

83 m s_1 at rmax = 17 km. 

We must address two caveats to the conclusions drawn from this experiment. First, as 

mentioned previously, moist convection continuously generates PV in a tropical cyclone, 

even as it is being mixed into the eye, whereas in the barotropic model, the PV is imposed 

initially with no additional forcing.  Only a three-dimensional primitive equation model, 
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with explicit moist thermodynamics will reproduce the complete PV dynamics. Second, 

the central vortex, with its relatively large vorticity, alters the instability and the mixing 

(Schubert et al., 1999). According to Kossin (2000b), the peak vorticity in the eye partially 

stabilizes the unstable vorticity annulus of the eyewall; therefore, in the absence of the 

center vorticity, the eyewall is unstable to higher wavenumber perturbations with even 

larger growth rates. 

6.3    Boundary Layer Moisture 

The excessive moisture content of the boundary layer inflow may explain much of the 

unrealistic intensity of our simulated tropical cyclone. The inflow advects nearly saturated 

moist air with 23.9 g kg-1 of water vapor into the storm core. This moisture eventually 

condenses in the eyewall and precipitates at a maximum rate of 200 mm hr_1. Such 

an incredible precipitation rate equates to tremendous latent heating, which ultimately 

governs the intensity of the vortex (Eliassen, 1952; Shapiro and Willoughby, 1982; Schubert 

and Hack, 1982). Since the ocean surface in the model represents an infinite reservoir of 

latent energy, the intensification of the vortex continues unabated until surface friction and 

internal dissipation overcome the energy input. Thus, in order to limit the intensification, 

we must incorporate additional microphysics into the model to more accurately reproduce 

the moisture content of the boundary layer. 

In the sub-tropical atmosphere, the moisture profile of the steady-state boundary layer is 

maintained by a subtle balance between the upward flux of moist air from the surface and 

the net downward flux of dry air through the trade-wind inversion (Nitta and Esbensen, 

1974; Betts, 1975). Specifically, below the inversion, turbulent eddies transport moist air 

from the surface upward, while above the inversion, large-scale subsidence transports dry 

air downward. Shallow cumulus clouds detrain the moist air into the free atmosphere 

above and entrain the dry air down into the boundary layer below. The steady relative 

humidity (RH) profile of the boundary layer is then maintained by a balance between the 

upward turbulent flux of moist air and the downward turbulent flux of dry air. 
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In a simple model of the boundary layer that neglects such details as the trade inversion 

and shallow cumulus clouds, the balance between the upward and downward turbulent 

fluxes is achieved indirectly between the downward advection of dry air by large-scale 

subsidence and the upward flux of moist air by diffusion. In our model, at least initially, 

there is no such balance. To understand why, consider the model predictive equation for 

the total water mass, (2.56), as expressed within the boundary layer, i.e., 

du'       du1     du      fd<f>a      an ,   . 

wherein we have also neglected the precipitation flux. According to this expression, the 

change of water mass at a point within the boundary layer is governed by the horizontal 

advection, vertical advection, and vertical diffusion. Initially, however, the horizontal 

and vertical advection are zero, because there is no secondary circulation or large-scale 

subsidence (i.e., u = w = 0). In contrast, the vertical diffusion is not zero, due to the 

surface flux produced by the initial vortex (i.e. v / 0, Fv ^ 0). The change of water mass 

is then governed by the vertical diffusion alone. As a result, the RH increases rapidly to 

near 100%. Observationally, the RH should be no greater than 84% in the surrounding 

environment or 95% in the tropical cyclone core (Hawkins and Imbembo, 1976). Even after 

the secondary circulation of the tropical cyclone develops, the boundary layer RH remains 

near saturation. With such large values of RH in the boundary layer inflow, the tropical 

cyclone has a rich supply of latent energy from which to intensify. 

Even analytical models like that from Emanuel (1986) demonstrate a marked sensitivity of 

the steady-state tropical cyclone to the RH, or moist entropy, of the boundary layer inflow. 

As a simple thought experiment, Emanuel derived the boundary layer closure for his model, 

assuming that the vertical turbulent, or diffusive, flux vanishes at the top of the boundary 

layer. The steady-state solution then required a balance between the vertical turbulent 

flux convergence and horizontal advection by the inflow. However, the horizontal moisture 

gradient necessary to achieve this balance was unrealistic; thus, according to Emanuel, the 

solution to the modified model produced an "absurd" distribution of entropy and angular 



162 

momentum. As a result of this unrealistic solution, the final model was derived assuming 

instead that horizontal advection was negligible, and that the vertical turbulent fluxes 

at the top and bottom of the boundary layer approximately balanced to produce a near 

constant value of RH. However, even if the vertical turbulent flux at the top of the boundary 

layer were properly incorporated into our model, the moist entropy would still increase, 

because there is no initial large-scale subsidence to continuously replenish the dry air. 

Large-scale subsidence in the subtropical atmosphere is driven by radiational cooling. 

For example, radiative cooling of 2°C day-1 would produce a gradual descent of about 

0.4 km day-1 or 4.6 mm s_1. As noted in chapter 2, such cooling is absent from most 

axisymmetric tropical cyclone models. Recently, however, Rotunno and Emanuel (1987), 

and Zeng (1996) incorporated a crude representation of radiative cooling using a simple 

Newtonian scheme, which relaxes the temperature profile toward a fixed-background pro- 

file. This scheme apparently achieves the desired result in the surrounding environment; 

unfortunately, it also subtly yet unrealistically alters the evolution of the tropical cyclone 

core. As stressed in chapter 2, we have chosen not to contaminate the essential physics with 

an efficient yet crude representation of the radiation. We will save this test for a future 

version of the model that contains a physically-consistent radiation parameterization. 



Chapter 7 

CONCLUSION 

There are no foolish questions and no man becomes a fool until he has stopped 
asking questions. 

Charles Proteus Steinmetz (1865-1923) 
German-American electrical engineer who 
pioneered the use of alternating current. 

In the introduction, we posed the fundamental question: What regulates the intensity of 

tropical cyclones? To answer this question, we developed a two-dimensional nonhydrostatic 

primitive equation model to simulate a symmetric tropical cyclone-like vortex. Certainly, 

this type of model cannot answer the posed question definitively; however, the simulations 

presented here do verify and even extend many existing theories, and provide new insight 

into the parameters and processes governing tropical cyclone intensity. 

7.1    Summary 

The model physics are based on the unique set of nonhydrostatic, primitive equations and 

bulk microphysics formulated by Ooyama (1990, 1997, 1999, 2001). Dynamically, these 

equations contain the complete bulk physics of a precipitating atmosphere, because they 

materially conserve not only the precipitation mass, but the precipitation momentum and 

entropy as well. In other words, the equations are not pseudoadiabatic, as in many other 

models. Thermo dynamically, the reversible processes are computed exactly; therefore, any 

empiricism is isolated in the irreversible processes, which are represented by the microphys- 

ical parameterizations. Finally, the ice bulk microphysics scheme is simple yet physically 
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consistent. Instead of representing each ice species independently, we represent water and 

ice collectively as a single synthesized condensate, which we define using a temperature 

interpolation of the saturation vapor pressures over a plane surface of water and ice. The 

phase change of water to ice is then manifest as a large positive anomaly in the synthesized 

specific heat. 

The model spatial numerics are also unique and based on the Spectral Application of Fi- 

nite Element Representation (SAFER) method developed by Ooyama (1984, 1987) and 

DeMaria et al. (1992). As the name implies, the SAFER method is a spectral approach 

that uses the cubic B-spline finite element as the basis function. This method incorporates 

favorable characteristics from both the Fourier spectral and grid point methods. Because 

the first two derivatives of the B-spline are continuous, the SAFER method has smaller 

dispersion errors, similar to the Fourier spectral method. Yet, because the B-spline is lo- 

cally defined, the SAFER method has flexible boundary conditions, similar to a grid point 

method. With reduced dispersion errors and flexible boundary conditions, the SAFER 

method provides for noise-free nest and lateral boundary conditions. Finally, unlike other 

spectral methods that use nonorthogonal basis functions, the SAFER method is compu- 

tationally efficient, considering the expense per degree of freedom. 

To better understand the dynamics of a precipitating atmosphere, we further derived a 

generalized form of the moist potential vorticity (MPV) principle from the model equa- 

tions. Specifically, we generalized Ertel's (1942b) dry PV (DPV) principle using a virtual 

potential temperature (9P) that is a function of the total pressure and total density, includ- 

ing condensate. This form of the MPV has several advantages over other forms. First and 

foremost, 9P exactly eliminates the solenoidal term from the PV conservation equation; 

therefore, the MPV is exactly invertible. Second, the MPV satisfies the impermeability 

theorem of Haynes and Mclntyre (1987, 1990). Third, the MPV contains all of the moist 

physics, including precipitation. Last, since 0p is a virtual temperature, the MPV dis- 

tribution is similar to that of the DPV. In contrast, the more commonly used equivalent 

potential vorticity (EPV), defined using the equivalent potential temperature, does not 
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share these advantages. For instance, the EPV is not exactly invertible and is not com- 

parable to the DPV (i.e., the EPV is zero in the eyewall where the DPV and MPV are a 

maximum). 

To test and validate the model against current observations and theory, we performed 

a control experiment and a series of sensitivity experiments. The control experiment 

was defined using relatively standard microphysical parameterizations, and initial and 

boundary conditions. This approach facilitated the comparison of the control experiment 

with past axisymmetric tropical cyclone simulations. Several additional experiments were 

then performed to test the sensitivity of the model physics and numerics. In particular, we 

tested the sensitivity to the horizontal and vertical grid spacing, the ice and precipitation 

microphysics, and the horizontal diffusion. 

7.2    Conclusions 

Prom our analysis of the control and sensitivity experiments, we have gained new insight 

into the intensification of symmetric tropical cyclones, including the following conclusions: 

• Most importantly, to our knowledge, this is the first primitive equation model to 

simulate the frontal collapse of the tropical cyclone eyewall, as theorized by Emanuel 

(1997). During the collapse and frontogenesis, a large MPV anomaly develops in 

the mid-troposphere of the eyewall. Supplemental experiments using a barotropic 

nondivergent model (Schubert et al., 1999) suggest that this MPV distribution is 

unstable. However, the axisymmetric model is incapable of simulating the ensuing 

turbulent mixing; instead, it nearly conserves the airmass inside the eye. These 

results may help explain the conflicting observations of mixing (Kossin and Eastin, 

2000) and non-mixing (Willoughby, 1998) between the eye and eyewall. 

• Axisymmetric tropical cyclone models are extremely sensitive to the horizontal grid 

spacing. It is clear from these results, and implied in the past results of other 

axisymmetric tropical cyclone models, that the intensity of the vortex increases and 
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the size decreases as the horizontal grid spacing is reduced. Furthermore, these 

experiments indicate that independence from the numerics does not occur until the 

horizontal grid spacing is less than 2 km. 

In contrast to the results of Willoughby et al. (1984) and Zeng (1996), secondary 

eyewalls do not form due to symmetric instability, but due to low-level conditional 

instability and the additional buoyant ascent resulting from the freezing of conden- 

sate. Nevertheless, symmetric instability does sustain the secondary eyewall and 

supports its discrete inward propagation. 

The primary eyewall and vortex weakens not only due to the secondary circula- 

tion and convective outflow from a secondary eyewall, as proposed by Shapiro and 

Willoughby (1982) and Willoughby et al. (1982), but also due to the stratiform out- 

flow of the primary eyewall itself. The mesoscale downdraft from the stratiform pre- 

cipitation transports low entropy and angular momentum from the mid-troposphere 

into the boundary layer, and eventually into the storm core, which weakens the 

eyewall convection and the vortex. 

The intensity of the simulated tropical cyclone exceeds observed values in the absence 

of large-scale subsidence. If this subsidence is not present, the upward turbulent flux 

of moisture from the surface is not balanced by the downward advection of dry air 

from the mid-troposphere. As a result, the boundary layer moisture increases to near 

saturation. This moisture then provides an excessive source of latent energy to the 

tropical cyclone, allowing it to intensify beyond realistic bounds. In the subtropical 

atmosphere, the subsidence is driven by radiational cooling; however, in virtually all 

axisymmetric tropical cyclone models, radiative cooling is either neglected or crudely 

parameterized (Rotunno and Emanuel, 1987; Zeng, 1996). We speculate that those 

models neglecting radiative cooling apparently avoid the excessive intensity. This is 

accomplished in one of two ways: indirectly, through coarse horizontal grid spacing, 

which restricts the size and intensity of the vortex, or directly, through excessive 

vertical diffusion, which transports the moisture through a greater depth. 
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7.3    Future Work 

The most serious disparity between our results and the observational evidence is the ex- 

treme intensity of the steady-state tropical cyclone. As discussed above, this shortcoming 

can be corrected by including radiative cooling. Most importantly, we do not think that 

limiting the intensity will invalidate our qualitative conclusions but will certainly change 

the quantitative results. To determine the magnitude of the change, a physically consis- 

tent yet computationally efficient radiation parameterization must be incorporated into 

the next version of the model. 

In this version of the model, we also chose to use simple microphysical parameterizations 

that incorporate only the fundamental physics necessary to simulate a tropical cyclone. 

In the future, we will include more complex microphysics to understand the more subtle 

effects of ice, precipitation, and diffusion. For instance, we could incorporate a relatively 

elaborate precipitation scheme (Lin et al., 1983, e.g., ) to investigate the sensitivity of 

various ice species, similar to Willoughby et al. (1984), Lord et al. (1984), and Lord and 

Lord (1988). A more detailed surface flux parameterization, based on Monin-Obukhov 

similarity theory, has already been incorporated and is being tested. This parameterization 

includes Charnock's (1955) factor, which integrates the influence of wave height on the 

roughness length, but still does not contain the latent effects of sea spray (Bao et al., 

2000). 

A significant accomplishment of this work is the derivation of the MPV principle; however, 

we have only partially assessed its utility. We have diagnosed the MPV, but we have not 

inverted it. Since the power of PV is in its invertibility, we must next invert the MPV and 

diagnose the balanced flow. 

The diagnosed MPV was also indirectly used to evaluate the potential barotropic instability 

of our symmetric vortex. To directly evaluate the instability requires a three-dimensional 

version of the model numerics. Although such a version is theoretically possible, it would 
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be computationally expensive as well. According to Ooyama (2000, personal communi- 

cation), the numerics can be approximated to decrease the computational cost; however, 

the spectral filter is then no longer isotropic. As a result, our symmetric tropical cyclone 

would eventually have a square appearance. Until a three-dimensional version of the nu- 

merics can be perfected, we will continue to investigate two-dimensional problems. For 

instance, the model has been used extensively to study squall lines (Ooyama, 1995, 1997, 

1999; Garcia, 2000). In the near future, we plan to use it to investigate the dynamics of 

the Hadley circulation. 
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Appendix A 

SUMMARY OF PAST AXISYMMETRIC TROPICAL 
CYCLONE MODELS 

This appendix contains a tabular summary of past axisymmetric models developed by the 

following authors: 

1. Kasahara (1961) 

2. Syono (1962) 

3. Rosenthal (1964) 

4. Kuo (1965) 

5. Estoque and Fernandez-Partagas (1968) 

6. Yamasaki (1968a,b) 

7. Ooyama (1968, 1969) 

8. Rosenthal (1970a,b) 

9. Sundqvist (1970a,b) 

10. Anthes et al. (1971a,b) 

11. Kurihara (1975) 

12. Rosenthal (1978) 

13. Yamasaki (1977a,b) 

14. Yamasaki (1983) 

15. Willoughby et al. (1984) 

16. Rotunno and Emanuel (1987) 

17. Zeng (1996) 

In the tables that follow, a dash indicates that the information was not included in the 

paper. 



CO 
CJ • »-* 
CO 

ft 
O 
cj 

0) 

181 

3 
o 

43 

o 

o 
Ö 
CD 

X) 

o 
CJ 

X) 
Ö 
CO 

CO 
_CJ 

'to 

ft o 
t-. 
CJ 

c 
o 

o a> 
ft 

43 

CJ 

Ö 
CJ 

CJ 

CO 
CJ 

ft 
"53 
o 

CO 

I* a 
B 
CD 

3 
CC 

& 
CD 
3 
cu 

CO 
s 
cu 
CO 

tj 
3 
03 

O 
e 

cu 
3 
cu 

CO 
3 
cu 
CO 

•c 
3 
CO 

O 
3 

C3 

*-i 
0) 
3 
cp 

•c 
3 
CO 

4- ft 
.§ 

CO 

CO 

3 

g 
O 
CJ 

O 
3 

CO 

I-I 
-+-3 

i o 
CJ 

O 
3 

c3 

> 
3 
O 
CJ 

t? 
-3 

c3 

& 
I-I 
cu 
3 
cu 

•c 
3 
CO 

O 
3 

s o 
o 
Z 

o O 
Z 

O o z O o 
Z 

O CO CO O 
Z 

O 
Z 

O 
Z 

o 
Z 

O 

3 
O 

13 

3 
O 

11 
rl 

c 
.2 

Co 
+J 

'& 
'o 
cu 

ft 

2 "o 
a u 

1 
a a 

l 
a 

l 
a a 

l 
a 

l 
a 

1 
>> 
I-I 
Q 

a 

1 
a 
|H 

a 

I 
a 

l 
2 a 

l 
a 

I 

ö 
.2 
o 

3 o o 

3 
8 
bo 

S 
I* 
Co 

3 
8 
bO 
3 

a 
t-i 

3 
8 
bO 
3 

a 

ä 
ccj 

ä 

to" 
CO o> 

o 
3 

CD 
Cl 
i—l 

CD 

o 
4-3 

3 
8 
bO 
3 

a 
S3 

3 
8 
bo 
3 

'a 
S3 

13 ft 
cu 
ft 
>> 

LC? 
CO 
o> 
rH 

O 
3 

I 
ä 
CJ 
ft 
>> 

in 
CO 
Oi 
rH 

O 
3 

-3 
cu 

42 • ^* 
i-> 
CJ 
CO 
cu 
I-I 
ft 

f 
& o 
CJ 
+J 
CO 

'o 
a 

ft 
cu 

+3 
• PH o 
• PH 

ft 
X 
cu 

■ft "a 
'o 
"ft 
a 

•3 
CD o 
9 
m 

•3 
>> a 

>> 
a 

'S 
o 

•3 

a 

•3 
>> a 

•3 
>> a 

-3 
es 

o 
-3 
>> 
a 

-3 

a 

-3 
ccj 

o 
l-i 

■3 
>> a 

a 
-3 
>> 
a 

T3 

a 

u 
•3 

3 
O 
Z 

u 
■3 

4^ 
3 
O 
Z 

|H 
-3 
4^ 
3 
O 

lH 
-3 
4^ 
3 
O 

ll 
T3 
>> 

43 
3 
O 

'S 
O i—i CN CO Tf lO CO t^ 00 Ol o 

rH 
rH 
rH 

(M 
rH 

CO 
rH rH rH 

CO 
T—1 rH 

rH     0) 

3  ft 
CO      CO 



o 

182 

ft 

CD 

13 
cj 
CD 
CD 

^3 

CD > 
-l-> 

O 
0) 
a m 
0) 
>H 

ro 
■»-> 

Ö cu 
o 

{fi o> 
o 
V 

ö 
Ü 
») 
3 

tti 
T3 

-a 
+i 
Ö 
Ü 
N 
lH 
o 
A 
T3 
Ö 
cfl 

13 o 

S0 
a 
CD 

> CD 

CD <£ 
.0 CD 
+-> o 
CD o 

S3 cf 
.* -< CD 

T3 
O 
a) 

9 ^ 
3 

^ CO 

^ CD 
rfl 

c -»-> 
CD 

CO 

(H 
CD C| 

is O 
T3 

Ö 
O § 
CO 
-1 Ö 

fcl o 

T3 
CO 
3 

"QJ 
to 

-o T3 
o 

'S 
C 

rs o 
N 

< 1-4 
o 

CD A 

1 CD 

■4J 

CD 
•IJ 
cc3 

T3 

43 S 
-M 

& '5 
5 CO 

fe 
o 

.«3 
CD 

CO 
e "C 

13 o 

1 
h-3 
m 
< *' 

4J 

3 
CO 

CD 
X3 

T3 

_o 
"3 

CO 
CD 

CD 
Id 
O 
CD 

T3 

3 
CD 
>H 

'Q 
>> 
13 

-73 
Ö 
O 
cj 
CD 
CO 

.3 
T3 

CD 
CO 
3 
>> 
(-1 
O 
CD 

43 

a 
CD 

c 
CD 
ft 
CD 

is 

-< 
CD 
a 

>> 
M 

CO 

13 

1 
u 
CO 
O 

a 
o u 
ft 

'S 
CO 
Ö 
O 

13 
Ö 

cS 
CD 

S3 CO CD >> 13 a 
tc -C +J 

CO 'C c8 
c- 

a" 
s 

O 
43 

CO 

is 
o 

1 
1 

CO 

CD 
43 

CO 

1 
3 

CO 

CO 

CN 
CO 

1 ^ 
O CN 
r-l 5> 

X + 
3 

CN 

CN cS f- 

ä l—l CO CO -H CO CO CO M 
CO j | 1 *~~^ CO 1 CO CO 1 1 CO 1 s 

oQ 
1 
O 

o 
1—1 

o 
1—1 

O 
r-l 

1 
O O 

i—1 
1 
O 

3 1 
o O 

r-l 
O 
r-l 

1 
O 

I 
o + 

i—i 

X 
CO 

1 
X X 

CN 

1 
X 
in 
CN 

+ 
CN 

CO o 

l-H 

X 
CO 

X 
in 
r-i 

r-l 

X 
CO 

O 
i 
a 
'3 
o 
2 

r-l 

X 
in 

X 
m 
CN 

X 
in 
r-i 

I-H 

X 
CO 

I-H 

X 

+ 
CO 

CS 

+ 
Ö 1 a 
+ O 

l-H 

in X 
Ö r-l 

r-i 

- 
a 

A! 
O 
lO 

■ i 

a 
CO 
CO 

i ■ 
a 

CO 

1 1 1 i 

& 
i 1 1 i 

CO 

t 

•<* 
__ CO 

O 
o 
rH o 

*H ^ in rH X m 
1 o 1 

■V 
CO 
O o X in 

CN 
o o 

I-H 

Ö 

s X 
CO 

1 
O 
i-H o 1 

o 
CO 
O 

CO 
O o r-H rH m CN 

i-H CN 
O i C 

X 
i-H O 

l-H 
r-l i—l rH X X 

lO 
i 1 

CO 
O 

X 
CO 

r-l <! j 1-i lO i 
r-H 

X 
^ 

m 

^-~. 
in m 

7 
CO CN 1 

O 
CN o o 11 8 

CN o 1 >-< © o o r-l rH i o o C *H c I i—1 o 
1—1 

5 rH 

X 
rH 7-1 X VI 

l-H rH J P J 
in 

r<5 ^ 

T3 
O rH <M CO f W CO t- 00 <y> o 

rH 
r-l 
r-l 

CN 
rH 

CO 
rH l-H 

in 
i-H 

CO 
I-H i-H 

s 



183 

CO 
CD 

a 
-o 
t-. 
O 
o o 
CD 
t-. 

CO 
CO 
4) t-. 

o 
£ 
SP 'S 
,0 

5 
CD 

T3 

t—I 

CO o 

CD > 

o 

< 

(H 

0) +-> 
Ö 

T3 
. r-1 

& 
j      | 

CO 

T) 
CO 
in 

0) 
43 
-4-> 

r/i 
•H 

,^1 

0 CD fl> -M 
(H l/J 
0) 

43 CD 

a 
„ +.< 

CO 

Ü 
CD 

43 
t-l 
ci; 

s CO 

3 ■w 

Ö < 
CD T) 

O 
s £ 
CO £ 
■s -*J 

7> 
O 
CD 
ft 

£ 
CO 
CP 

e II 

«5 
'S-g o .5 

C   a 

.2 u 11 

<3 1 

a 

*E 

I 
in 

c 

E 
CN 

• ■ 

e 

'i 
1 

CN 

CO (-> 
JS 

CN 

6 

o 
0) 
GO 

o 
CN 

u 
V 
CO 

CO 

TT 
1 

01 
tN 
tN 

' 
CD 

CO 

in 

u 
0) 
CO 

o 
CO 

W   CO 
b    IK 

O O 
CO  CO 

VIA 

u u 
V <u 
CO   w 

o o 
CN   iH 

y 

CO 

o 
CN 

Ü 
a> 
10 

o 
CN 

CJ 

0) 
CO 

O 
CO 

c 
0 

'+> 
n) 
u 
3 

Q 

c 

'i 
co 

C 

£ 
o 
CD 

CO 

J: 

10 
u 
j- 

to 
CO 

iß 

CO 
o 

1 
o 

CO 
t- 

M 

O 

CN 

' 1 
o 

CO 
t-i 

o 

CO 
h 

o 
00 

CA 

o 
CD 

CO 
u 

J- 

o 
J3 

O 
00 

CO 

a" 
•o 
o 

<J 
0 

< 

B 
© 

£ 
o 
o 

E 
o 
iß 

' cd > 

X 
B 
o 
o 
CO 

£ 

X" 
E 
o 
o 
CN 

6 
O 

X) 
E 
o o i 

XJ 

E 
o 
o 

CO 

E 
^s 
01 j* 

Via 

« A 

6 1 
o ü 
O   Co 

E 
* E 
CN J^ 

* A 

E 1 
o ^ 
O   cö 
<o  > 

a 
JA 

CN 

E 

to 
d 

< c 
o 

£ 

1 w 

+ v'" 
CO •-< O 

B 
JA 

o 

£ -* 

w   '■ 

CO N" 

+ ^" 
iß o" 

Sll 

E 
JA 

CO 
CO 

Ö 
CN 

E 
O 
CN 

E 

CN 

E 

o 
CN 

E 

o 
o 

o 

E 

o 
CN 

Al 

E 

viS 
«■2 

VIVI 

. a >- 
E ■* VI 

o10 E 
10    ,J1 

B* a 

o o •* 

E 
JA 

o 
O 
CO 

VI 

s 

6 

E 
JA 

kO 
»O 

1 

? 
O 
o 

0 ** 
3 
0 

o 
CN 

E 
JA 

Hi 

Is     ■* 

EtpE   8 
—'^   w 

2 .S +   - 

0 

•c x 
00 

X 

CN 

X 

o 

CD 
CN 

X 

CO 

•<r 

X 

co 

o 

X 

CN 
CN 

X 

o 
o 
CN 

X 

CN 
CN 

X 

tN 

X 
o 

X 

CO 

u 
o 

+ 

+ 
o 
o 

X 
CN 

00 

+ 
CJ 

o 
CN 

X 

CN 

u 
CN 
CN 

+ 

+ 
CJ 

o 
iO 

X 

CN 

o 
CN 

+ 
u 
o 
o 
w 

X 
o 
CO 

X 

c 

+ 
u 
o 
»o 

X 

o 
<N 

o 
o 

X 
o 
CN 

o 
CO 

X 

CN 
CO 

6 
0 
Q 

u 

2 

5 
o 
o 

2 
o 
o 

£ 
o 
o 

o 
o 
o 

XJ 
B 
o 
o 

o 
o 
o 

E 
o 
o 

V 
o 
o 
o 

E 
JA 

o 
CN 

1 
O 

E 

2 o 
o 

u 

CO 

E 
o 
o 

iA 

o 

JO 

E 
o 
o 

o 
o 

© 

f0 

CO 

E 
o 
CO 

1 
o 
o 
o 

E 
o 
o 
iH 

o 
o 

E 

o 
CN 

6 

E 
JA 

CO 

<N 
CN 

Ö 

o 
CN 

£ 
JA 

CN 

E 

CN 

s 
0 
Q 

Ü 
o 
X 

£ 
a 
o 
00 

B 
JA 

CO 

m 

B 
JA 

O 
o 
o 

E 
JA 

o 

£ 

o 
o 

E 

o 

CN 

E 

o 
o 
o 

E 
JA 

O 

E 
JA 

O 
o 
CO 

E 
JA 

O 
O 
o 

£ 
JA 

O 
o 
o 
CN 

E 
JA 

O 
o 
CO 

o 
CO 

O 
O 
to 
CN 

£ 
JA 

O 
O 
to 

E 
JA 

O 
O 
lO 

E 

CN 

g 

"3 
0 

S 
- CN CO rr »c CO h- 00 01 

o l-H CN CO Tf to CO t- 



184 

o 
•t-i 

o 
Ü 

CP 

H Ö 
cp 

g a 
y> ö 

o 
o 

to 
3 a 

CP 

'S T3 
3 
3 

ID o 

CO -8 a 
<3 -£> 

P h0 
S~ Ö 

CP 
(1) 

Ö 
3 

CO 
o 

3 
CO 

(1) 
(S XI 

+-■ 

13 M-I 
O 

-M 
rt 0> 
cp l-H 

3 
CO 
CP 

-u !H 

a ft 
<1> 3 C) 

S cS 

3 3 

S CP 
XI 

X 
+J r/> 

CO <o 

«, 
H 
a TJ 
F 3 

S CO 

Ö cif 
CP 3 
CP 

.£5 £0 

IS <D 
a 

CO 
Ö 

a 
cp o -t-ä 

+J Cl> 

TJ a 
n t3 
o 3 

CO 

CO cd 
+3 cp 

CO 

e CP 
„ci 

0) -IJ 

X) CO 
o 
s hB 

Tf CP 

<< 0) 

cp H 

-9 IH 

,* <* 
H a 

JO 
3 
-O 
3 
X 

c 
.2 
_ed 

e 
o 

_ed 1 
[J 

1»! 
CP 

IH 

3 
c3 

3 "3 
cj 

l-H 3 O X o r-H X > CP w 
ej 

13 
3 
o o 
CP 

^4 

'Ö 

S-l 

cd 
TJ 

"cd 

S 
o 
3 

ci 
CP 

s 

T3 
CP 
u 

1 
"ed H 3 

u 

? 
T) 

CP 
CJ 

<4H" 
o 

.CP 

a 
o 
CJ 
CP 

O CP 

g 
AS 
o 
rH ■a 

3 
o 
u ft CO CO CP j>> Cti > 

<4H -O 

s 
o 
O 

ft 
3 

s 

ft 
ft 
s 
CP 

"cd 

S 
o 

S 
u 

3 

CP 

Id 
CO 

o 

CP 
CJ 

ci 
•a 

O 
CO 

1 
CP 

bO 
3 

T3 
3 
3 

bO 
3 

T> 

■ H 
T) 
• i-H 

3 
3 

bO 

CN 

o 
SH 
cd 
(5 o 

ft 
S 

3 

bB 
1 

bO 
% • t—l 

O 
CO 

3 

§ 
M 

bS 
3 

TJ 
3 

CP 

1 
ft 

S3 

CP 

1 
Ö 

TJ 
C 

CO 
CP 

00~ 
in 

i—i 

CO 

0? 
m 

3 
ti—« 
T3 
3 

3 
O 
CO 

CO 
Ö 

CN 
1—1 

CO 
r-H 

3 
O 
CO 

CO 
a 

3 
O 
CO 

3 
x> 3 

05 
rH 

3 
O 
CO 

CO 

cd 

m 
a> 
rH 

S3 
cd 

3 

>> 

3 
o 
+3 

'3 

r—r 
1—1 

> 
cd 

t-H 
(-H 

!3 
'S 

i—i 
cd 

r-H 
r-H < 

d 

t—r 

O0 
in 

r-H 

3 

c 
.2 

m 
rH 

CO 

3 

3 

1 

3 

3 

rH 

cd 
T3 

o 
1-5 

< 
IV 
1—1 

3 
cd 

T3 
ti 
O 

1-5 

m 
rH 

3 
cd 

TJ 
J-l 
O 

1-5 

TJ 
c 
o 
CJ 

d 
CP 

d 
X 
CP 

ft 
X 
CP 

ft 
CP 

CP 

c§ 
o 

o 
'S 
Ö 
o 
CJ 

o 
ft TJ 

O 
1-5 

  
£2 

3 W m 
o CN O o lO lO o r-H O m o O rH 

o CO 
r-H 

r—1 o r-H rH r-H r-H r-H rH rH rH o 
'^a o o 1 

1 
o O O O o o O o o rH 

i> l-H O 
t—1 

1—1 r-H r-H r-H r-H r-H rH rH rH rH 
Ö 

£ 
  
ü 
bO o CO o q 1C CN in o o o CO q 
CP 

3 
1 IV «5 00 i t^ t^ 00 l> 1 oi 1 I ci o6 CO oi 

CN CN CN CM CN CN CN CN <N CN CN CN 

e5 
in 

^_^ 1 
O in 

■ 
m 

1 
in | in 

1 
in 

1 
in 
j 

in | in 
1 

in 
1 

in 
1 

m 
j 

in 
I 

^ T—l l 
O o O O O O O O O O O O 

i 
CO 1 X T-H l i r-H r-H r-H r-H r-H r—1 rH rH rH l rH rH 

in 
iv 
iv 

X X X X X X X X X X X X 
*•-» 

lO lO lO m in m m in m m m m 
cö 

, , 
s q 

lO 
CN o 

d 
IC 

o o o o o o o q in o 
H 
O 

6 

o o CN 
CN 

11 

T-5 

1—1 

Ö 
o 
r-H 

Ö 
lO 

d 
in 
CN 

d o 
CN 

d 
00 

d 
r-H 

d 
CN 
CN 

i i in 
IV 

CN* 
00 

d 
00 

t. 

^ s 
H 

1 
CO q q 

H 
e 

E 

to o tv t- o o O o CO CN O q o 
o o !—1 ö 

i—i 
CO -* d 

r-H IV in 
r-H 

lv 
CO 00 IV 

■ i 
00 CN 

rH 
d 
rH 

» 
^_ 

CP 
-a 
o t—l CN CO Tf lO CO IV 00 OS O rH CN CO H^ in CO t~ 

S 



is 

185 

CD 
s 
cu 

TO IJ 

« to 

^ c 
CD '2 
•-1 E 

CO CU 

C '-2 

'£ Ü 

s 
s cu 

3 
3 
CD 
CD s cu 

cu U 
J3 cu -u o 
.22 

3 
Ö CD 

of *= 
+2   co 

I-; 
2   1 

T3  x) 
O    CU 

TO 
AS !-( 

s 

.3 
■+^ 

1 
& 
d 
cu 

if 
■a 
o 
«1 

CO 

£ 
o 

cu 

TO 
3 
3 

TO 
o 
S 

*e3 
o TO 
TO 
3 

6 
3 
o 

CU 

TO 
3 
3 
-^ TO 
O 

0 

> 
d 
cu 

d 
cu 

o 
S-l 

'o 
cu 
>> 
CD 

o 
a 
w 
I—1 

a 
CD 

CU 
>v 
cu 
o 
3 

to" 
HH 

d 
3 

< 

9 
o 

i—i 

a 
X a 

CD 

d 
3 

TO 
TO 
>> 

CU 
feO 

-o 
3 

1 TO 
3 
<u 
+3 
X 
<v 

1 
u o 
a 
S 
a 
3 

■o 

Ü 
O 

^3 

CU 

s TO 
>> 
Si 

5 

7& 
o 
CO 
cu 
3 a ••* 
-tj 
a o 
o 
cu 
S-i 
3 TO 
s 
l-l 
a 

<T 

a 
X 

a 

% U-i 

o 

TO 
CU 
3 
3 

3 
O 
u 
cu 
l-l 
3 TO 
s 
S-i 

a 
r-T 
o 
W 

S 

TO 
S-1 

c 

£ 
HO 

i i—i o> 1 1 
o 
T-l 

CN 

CD 

i-H 

8 

Iß 

r-H 
CN i 

lO 
1—1 
1—1 

O 
CN 
i—l 

o 

8 
CO 
lO 
1—1 

o 
o 
1—1 

1 
o 
CN 

CU 
.3, 

c 

i 
a, 

i 
o 
00 
OS 

CD 

11 
1 1 

O 

8 

iß 

8 
05 

T-H 
lO 
C7i 

i 
1—1 
CO 

O 

00 
CN 
05 

o 
o 
OS 

o 
lO 

CO 

C7> 

O 
lO 

11 

TO 
s-l 

.3, 
H 
a 
S 

HO 

s 
B 

00 
CN 
i—1 

t-H o> o 
I—1 CO 

CN 
C75 
i—l 

o 
CN 
T-H 

8 

CN 

i—i 00 ■ o o 
CN 
i-H 

bD 

o 
00 

1 
00 
lO 

o 
CD 
1—1 

o 
CO 

O 
CN 
i—l 

11 

o 
CN 
I-H 

If 
N 
a 
6 

s 
3 
o 
CO 
I—1 

lO 

o 
00 
I—1 

11 

o 

8 

o 
iß O 

CN 

o 
1—1 

8 

o 
O 
m 

o 
CO 

IC 00 
CO 

CN 

CO 
o 
1—1 

11 

o 
CN 

00 
CO 

i—1 
i—1 

11 

7 
TO 

H 
a 
g 

1—1 
Ö 

CN 

to 
CO 

CN 

8 
O 

1—1 
CD 

n 
CD i—i 

lO CO CO 
o lO 

00 

o 
CN 
rH 

11 
o 
lO 

CO o 
00 

O T—1 CN 00 Tf lO CO t~ 00 o> O 1—1 CN CO Tf lO CO l> 

lO 

a> 

1 
CO 

CO 
• >-4 

H 
Ö 
S 



Appendix B 

DERIVATION OF THE MOMENTUM EQUATION 

In Chapter 2, section 2.1.2 we use a single equation (2.5) to represent the total momen- 

tum of a parcel. Although separate momentum conservation equations could represent 

the momentum of each constituent and phase of matter within a parcel of moist air, a 

single equation for the total mass is more mathematically convenient and computationally 

efficient. This appendix provides a detailed derivation of equation (2.5). 

Let us begin our derivation with the momentum conservation equations for the dry air, 

water vapor, cloud, and precipitation mass, separately 

Pa^W + mx {paUa) + PaW + Vpa = Fa + />aDua' (B-1) 

Pv -j£- + 2fix (pvuv) + pvV$ + Vp„ = l{ + PvDUv, (B.2) 

P^ut+ m x (PcUc) + PcV$ = Fc + PcDuc' (B'3) 

Pr -££■ + 2ÜX (prur) + prV$ = 1*. + prDUr, (B.4) 

where for i = a, v, c, r; Uj is the velocity; pi is the density; pa &ndpv are the partial pressures 

of dry air and water vapor, respectively; l\ is the internal frictional force between different 
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forms of matter with j = a,v,c,r for j ^ i; DUi is the external frictional force per unit 

mass; ft is the Earth's angular velocity; $ = (f> - \ |ft x r|2 is the potential of the Earth's 

gravitational and centrifugal forces; and Di/Dt = d/dt + u* • V is the material derivative. 

By making several simplifying assumptions, we will combine equations (B.1)-(B.4) into a 

single expression. 

First, we combine equations (B.1)-(B.3). Letting the dry air and water vapor represent a 

mixture of ideal gases, the total pressure, according to Dalton's law, is given by p = pa+Pv 

In addition, we assume that the dry air and water vapor constitute moist air and move 

together with the same velocity (i.e., ua = u„ = u). We further assume that the cloud has 

zero inertia and negligible settling velocity such that it also moves with the moist air (i.e., 

uc = ua = u). These assumptions allow us to combine (B.1)-(B.3), leaving 

PamJ^ + 2ft X (pomll) + PamV§ + Vp = Iam + pamDu, (B.5) 

where pm = pv+pc is the mass density of airborne water; pam = pa+Pm is the mass density 

of the dry air and airborne water; l\ = -I*- with i, j = a,v,c for i ^ j; Yam = Ya + Ir
v + Ir

c; 

and PamDu = PaDUo + Pv&Uv + pcDUc. 

At first glance, it may seem unnatural that the pressure gradient force results in an accel- 

eration of cloud mass. This apparent violation of hydrodynamical principles is eliminated 

by considering the acceleration as a two-stage process. First, the unbalanced pressure 

gradient force accelerates the dry air and water vapor, resulting in a velocity difference 

between the mixture of gases and the cloud. Second, the frictional exchange of momentum 

rapidly removes the velocity difference, decelerating the mixture of gases and accelerating 

the cloud. The net effect is that the total mass, including the mixture of gases and cloud, 

is accelerated by the pressure gradient force. 

Finally, we combine (B.4) and (B.5). First, both equations are converted to flux form 

using the mass continuity equations for pam and pr given by 
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Sgp + V • (Pamu) = -Qr + DPam, (B.6) 

^L + V-(prur) = Qr + DPr. (B.7) 

wherein Qr represents sources/sinks of precipitation, and DPam and DPr represent the 

turbulent diffusion of pam and pr. Combining (B.5) with (B.6) and (B.4) with (B.7), we 

obtain 

-Qt (PamU) + V • (pamUu) + 2Ü X {pamu) + pamV$ + Vp = lr
am + BpamU - QrU,    (B.8) 

— (prur) + V • (prurur) + 2ft x (priir) + prV$ = I?m + DPrUr + Qrur. (B.9) 

wherein DPamU = paTODu + uDPam and DPrUr = prDUr + urDPr. Let the precipitation 

velocity, ur = u+U, be composed of the velocity of the moist, cloudy air, u, and a terminal 

velocity, U. Substituting this definition into (B.9), with Yam = -I"m, and summing the 

result with (B.8), we obtain 

%- (pü) + V • (püu + prurU) + 2Q x (pü) + pV$ + Vp = Dpü + QrU, (B.10) 

where p = pa + pm + pr is the total mass density, 

ü^PaTnU + prUr=u+p!-u 

P P 

is a density-weighted mean velocity or the velocity of the center of mass, and DpQ = 
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Equations (B.10) and (B.ll) are significantly different from those used to represent momen- 

tum conservation in other models (e.g., MM5, RAMS, ARPS) and thus require additional 

explanation. Notice that the flux has two terms. The first term represents the flux of total 

momentum along the motion of the parcel, while the second represents the flux of precip- 

itation momentum into or out of the parcel. Also, the final term in (B.10) represents the 

addition of momentum as cloud mass converts to precipitation mass. Inside real clouds, 

growing cloud particles slowly become precipitation particles as gravity accelerates them 

to some appreciable U. Inside model clouds, this acceleration occurs instantaneously as 

cloud mass with U = 0 becomes precipitation mass with U ^ 0 for Qr > 0. 

We next rewrite (B.10) in advective form. Combining (B.6) with (B.7) and using (B.ll), 

we write the mass continuity equation for p in terms of Ü, i.e., 

^ + W-(pn)=Dp, (B.12) 

wherein Dp is the turbulent diffusion of p.  We then use (B.12) to rewrite (B.10) in the 

advective form 

^ + 2ft x ü + V$ + -Vp = -V • (prU) - -V ■ (prurV) + ^U + Dü.       (B.13) 
Dt p p p p 

Note that this expression may also be written in the form 

^ + 2ft x ü + V$ + -Vp = - - V • [pr (ur - Ü) U] + ^U + DQ, (B.14) 
Dt p p p 

where D/Dt = d/dt + ü • V is the material derivative following a parcel moving with 

velocity Ü. When deriving the potential vorticity principle in Chapter 3, it will also be 

useful to know the rotational form of (B.14). Substituting the vector identity (ü • V) ü = 

V (^ü • ü] + (V x ü) x ü, we rewrite (B.14) as 
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+ Cxü = -vQü-ü + *)--Vp + P, (B.15) 

wherein £ = 2CI + V x u is the density-weighted absolute vorticity and 

F = -Iv>r(ur-ü)U] + ^U + Dü. (B.16) 
P P 

Notice that, in the dry limit (i.e., pv = pc = pr = 0, p = pa, p = pa, u = u), equation 

(B.15) reduces to 

du 
at 

+ C x u = -V (lu ■ u + *) - -Vpa + F, (B.17) 
\2 J       Pa 

wherein F = Du- 

Finally, in Chapter 2, due to a numerical restriction on the lower boundary condition of 

w, we approximated the momentum equation by letting DrW/Dt = 0. Applying this 

approximation to (B.10) and neglecting 2CI x (prU) for consistency, we obtain 

— (pu) + V • (püu) + 2Clx (pu) + pV$ + Vp = Dpu + prDu, (B.18) 

which in advective form is given by 

^ + 2ftxu + V$ + ivp = Du + ^Du. (B.19) Dt p p 

The rotational form of (B.19) is similar to both (B.15) and (B.17).   Separating out the 

advection of momentum by the precipitation, we rewrite (B.19) as 
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^ + 20 x u + V$ + - Vp = Du + ^Du - ^U • Vu. (B.20) 
Dt p p p 

Next, we substitute the vector identity (u • V)u = V \hu • uj + (V x u) x u to obtain the 

rotational form of the approximate momentum equation 

+ Cxu= -V (-u-u + $) --Vp + F, (B.21) 

wherein 

F = Du + ^Du - ^U • Vu. (B.22) 
P P 

Equation (B.21) is nearly identical to (B.17), except that F contains terms involving 

precipitation similar to F in (B.15). 



Appendix C 

PRECIPITATION MICROPHYSICS 

Precipitation microphysics in atmospheric models may be represented using various levels 

of complexity. One of the least complex and most widely used representations is the bulk 

parameterization scheme developed by Kessler (1969). The model reviewed in Chapter 2 

uses a variant of Kessler's parameterization developed by Klemp and Wilhelmson (1978) 

and further modified by Ooyama (1995, 2001). We present the details of this parameteri- 

zation in this appendix. 

The mass conservation equations contain two terms involving precipitation that must be 

parameterized: the precipitation generation rate (QT) and the precipitation settling speed 

(W). Equations (2.3) and (2.4) show that airborne water is converted to and from precip- 

itation through the precipitation generation rate (kg m-3 s_1), 

Qr = Qauto T Qaccr ~ Qevapi V^-v 

which is composed of the autoconversion of cloud to precipitation (Qauto), the accretion 

of cloud by precipitation (Qaccr), and the evaporation of precipitation (Qevap)- We have 

neglected the generation of precipitation by condensation, and the generation of cloud 

by the breakup or evaporation of precipitation (assuming the cloud evaporates before 

precipitation). The retained generation terms comprising Qr are then given by 

Qauto = (O.OOI s-1) [Pc - O.OOlpa), (C.2) 
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0.875 

^ievap — 

Qaccr = fice [2.20 s-^pci^j (C.3) 

fvmt (10-4 S-1) [pl(T)-pv] ( pr ^ °-525 

(2.03 nAg-1) p*v (T) + (3.337 K/T) Vl.O kgm (üF£FO   ■     (C'4) 

where 

/        o \ °'2046 

/went = 1.6 + 30.39/&5 (1Qk   m-3j > (°-5) 

is the ventilation factor and 

_ ( 0.2 + 0.8 sech [(T0 - T)/5.0 K],   if   T <T0, .     . 
hce ~ I   1.0, if   T > T0, 

K     ' 

is the ice factor. All other variables are defined in the List of Symbols. Note that if the 

generation rates become negative they are set to zero. 

The prognostic equations also contain a term involving the settling velocity (W), which 

we parameterize using 

\   / n \ 0.1364  /„    N 0.5 

w = -}lct{u.mm^)(TI^)      (*)   . (0.7, 

Klemp and Wilhelmson (1978) neglected ice in their formulation. To correct for this 

approximation, Ooyama (2001) added the ice factor (/»«.) to account for the observed 

variation of the settling speed across the melting level (Böhm, 1992). Since the accretion 

of cloud by precipitation (QaCcr) and the ventilation (fvent) are also functions of the settling 

speed, Ooyama (2001) includes /;ce in these definitions as well. 



Appendix D 

NUMERICAL BOUNDARY CONDITIONS 

In this appendix, we use the cubic B-spline to derive the numerical boundary conditions 

needed to solve the transformation from physical to spectral space. We first derive a 

general form of boundary condition. The general boundary condition is then used to 

derive specific boundary conditions for the lateral boundaries and the interface between 

grids. This derivation is compiled from material found in Ooyama (1984, 1987, personal 

notes) and DeMaria et al. (1992). 

D.l    General Boundary Condition 

To begin, let us derive a general form of the boundary condition by defining a second-order, 

linear, differential operator of the form 

G[u(x,t)]= g0u + giux + g2uxx, (D.l) 

where go, gi, and gi are constant coefficients that may or may not be zero, and the 

subscripts x and xx denote the first and second partial derivatives with respect to x. The 

boundary conditions at a given point Xj are then given by Gi [u (xj,t)) = fa (t), where fa 

is the condition and % — 1,2, or 3 is the number of the condition. Ufa = 0, the boundary 

condition is homogeneous; otherwise, it is inhomogeneous. 

We may impose many different ranks and types of boundary conditions. The number of 

mathematical conditions determines the rank, which for the cubic B-spline basis function 
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ranges from 0 to 3. For example, if the rank is 2, there are 2 boundary conditions: Gi = g\ 

and G2 = g2. If the rank is 0, there are no boundary conditions. In addition to the rank, 

there are different types of boundary condition. The type indicates whether the boundary 

condition constrains the function (type 0), its first derivative (type 1), its second derivative 

(type 2), or some combination. For instance, if the rank is 1 and the type is 0, then go ^ 0 

and 3i = 52 = 0 such that gou = gi, or if the rank is 1 and the type is 10, then go ^ 0, 

01 ^ 0, and g2 - 0 such that g0u + 9\UX = 5i- If the rank is 3, the type is always 3. We 

symbolize the rank and type of boundary condition using the notation RrTtt, where r is 

the rank and tt is the type. For example, R2T20 is a rank 2 type 20 boundary condition 

with g0u = gi and g2uxx = g2. 

D.2    Lateral or Outer Boundary Conditions 

The transform to spectral space requires lateral boundary conditions. These boundary 

conditions convert the basis functions from open, tpm(x), to closed, <f>m{x), form. A 

specific example of this conversion is presented here. 

Consider a Rl, homogeneous boundary condition of arbitrary type along the left boundary 

of the domain at x = XQ, i.e., 

g0u (x0) + g\ux (x0) + g2uxx (x0) = 0, (D.2) 

Substituting (2.29) for u(x) into (D.2), noting that Vm 0*0 for m > 2 is zero at x0, we 

obtain 

5o  Yl  a™^m (x°) + 9i   Yl  om^m to) + 52  5Z  °™^" (x°) = °' (D>3) 
m=—1 m=—1 W.——X 

which, if rearranged, yields the amplitude at the auxiliary node 
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-ai 

gpipo (gp) + ffi^d (gp) + 92J>'o (gp) 
J
floV-i (gp) + S1C1 (go) + 52^-i (go) 

goV'i (go) + 9iip[ (go) + g2< (go) 
got-i (gp) + fli^-i (gp) + 92ip-i (gp)' 

(D.4) 

Thus, given the boundary condition, the amplitude at the auxiliary node is expressed as a 

linear combination of the first two amplitudes inside the domain. Letting 

o    _ El=o9k^m  M m r-N 

ELo9k^-}(xo) 

and assuming that the denominator is nonzero, (D.4) condenses to 

a_i =ß0a0 + ßia1. (D.6) 

Similarly, along the right boundary of the domain at x = XM, the amplitude of the auxiliary 

node is given by 

ÖM+1 = ßM&M + PM-IO-M-I- (D-7) 

For reference, table D.l lists values of ßm for various types of the Rl, homogeneous bound- 

ary condition. 

Finally, to obtain <j)m (x), we substitute (D.6) and (D.7), using (D.5), into (D.3) to eliminate 

a_i and CLM+I such that 

' i>m (g) + ßmi>-\ (g),      m = 0,l, 
4>m{x)=    I   i>m{x) m = 2,3,...,M-2, (D.8) 

_  ^m (g) + ßm^M+l (g) ,    m = M -1,M. 

Examples of 0m (a;) for R1T0, R1T1, and R1T2 are illustrated in figure D.I. The shape 

of the two closed splines intersecting the outer boundary changes from the open form to 

accommodate the rank and type of the boundary condition. 
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(a) R1T0 (b) R1T1 

(c) R1T2 

Figure D.l: Examples of the closed cubic B-spline basis function, <j)m (x), for the homoge- 
neous boundary conditions a) R1T0, b) R1T1, and c) R1T2. 
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Table D.l: Values of ßm for various Rl, homogeneous boundary conditions. The constant 
A is a scale length for the outward exponential decay of u or ux beyond the boundary, and 
Ax is the constant nodal spacing. 

Type B.C. at XQ or XM ßo,ßM ßl,ßM-l 
0 u = 0 -4 -1 
1 ux = 0 0 1 
2 l^xx ~ ^ 2 -1 

10 u = ±Aux 
-4Al 

2A+Ax 
2A-Ax 
2A+Aa; 

21 Ux 
= iAu^x 

6A 
3A+Ax 

2A-Ax 
2A+Ax 

D.3    Nesting or Interface Conditions 

One distinct advantage of the SAFER method over finite-difference methods is the simple 

yet accurate condition that exists at the interface between nested grids. To show this 

advantage, let us derive the inhomogeneous boundary condition at this interface. 

Imagine two grids that are nested as shown in figure 2.5. The function u (x) is represented 

on the two grids by 

M+l 

, (x, t)=   53  am (t) ipm (a:)        (fine mesh), (D.9) 
m=—1 

N+l 

U (x, t) =  53 -^n (*) ^» (x)        (coarse mesh), 
n=-l 

(D.10) 

where am and An, ipm (x) and ipn (x), m and n, and M and N are the amplitudes, spline 

basis functions, node numbers and number of nodal intervals for the fine and coarse grid, 

respectively. 

Let us consider the boundary conditions at the left interface of the fine grid, which is 

symbolized by the subscript L. At this interface, we use a rank-3 inhomogeneous boundary 

condition satisfying 

u(x,t) = U(x,t), (D.ll) 
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ux(x,t) = Ux{x,t), 

llxx (•£■> *) = Uxx [pi *) • 

(D.12) 

(D.13) 

Substituting (D.9) and (D.10) into (D.11)-(D.13), using the definition of the cubic B- 

spline, and assuming for simplicity that Aa; = 1, we obtain 

O-l r i   i   0 " 
? 1 1 

o I i .2     2  . 

AL+I 

ao = AL 

01 . AL~1 . 

(D.14) 

A similar matrix solution is obtained at the right boundary of the fine mesh. 



Appendix E 

DISPERSION ERRORS 

In Chapter 2, section 2.2.1.5, we compared the dispersion errors of the centered, finite- 

difference method and the SAFER method, as applied to the linear advection equation 

du        du     n ,_   . 
W + C^ = °' (E1) 

with constant advective phase speed, cs. The dispersion equations used to make this 

comparison are derived in this appendix. 

E.l    Exact Solution 

To calculate the dispersion errors associated with each method, we must know the analytic 

solution to (E.l). Let us assume that this solution is periodic in x with wavelength lAx, 

and is propagating with computational phase speed c such that 

u (x, t) = exp 
il-K (x — ct) 

lAx 
(E.2) 

Substituting this expression into (E.l) and solving for c yields the dispersion relation for 

the analytic solution 

C  =   Ce. (E.3) 
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This result shows that c has no wavenumber or wavelength dependence. All of the waves 

propagate with the same phase speed; therefore, the analytic or exact solution is nondisper- 

sive. In contrast, the numerical or approximate solutions are dispersive, as demonstrated 

below. 

E.2    Centered, Finite-Difference Method 

Next, we derive the dispersion equation for the finite-difference method. To derive this 

equation, we approximate the temporal and spatial derivatives in (E.l) using centered, 

finite-differences, i.e., 

'*     A   
j     + cs 

j+\,   ^ = 0, (E.4) 
2At 2Az 

wherein v% = u(jAx,nAt); j - 1, j, j + 1 are integers identifying the location of three 

successive grid points centered on the point jAx; Ax = Xj+i-Xj = Xj-Xj-i is the constant 

grid interval; n - 1, n, n + 1 are integers identifying the location of three successive time 

levels centered on the current time nAt; and At is the constant time step. To solve (E.4), 

we assume a solution similar to (E.2), except that it is not continuous but discretely defined 

at the grid points and time levels, i.e., 

itf = exp 
i2ir (jAx - cnAt) 

lAx 
(E.5) 

Substituting (E.5) into (E.4) and solving for c, we obtain the dispersion relationship 

c = cs 

sin 1[/isin(27r/Q] ffi   . 
H2n/l ' K   ' ' 

where n = csAt/Ax is the Courant number.   If we represent time continuously, this 

expression simplifies to 
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c = cs 
sin(27r/Z) 

2-K/I     ' 
(E.7) 

In contrast to the analytic solution, we see that the finite-difference solution has wavenum- 

ber dependent phase speed, resulting in computational dispersion. 

E.3    SAFER Method 

Finally, we derive the dispersion equation for the SAFER method. In this case, we ap- 

proximate the temporal derivative in (E.l) using a centered finite-difference method and 

the spatial derivative using the SAFER method, i.e., 

2At 
du 

' dx 
+ cs— = 0, (E.8) 

As shown in section 2.2.1.5, the spline representation of a single wave is given by the sum 

of two waves, i.e., 

u(x,t) = r0 (Z)exp 
i2ir (X — cnAt) 

lAx 
+ rp (l

1) exp 
i2ir (x — cnAt) 

I'Ax 
(E.9) 

wherein I Ax and r0 (I) are the wavelength and reduced amplitude of the input wave, 

and I'Ax and rp (/') are the wavelength and amplitude of the representational error or 

parasite wave (see figure 2.8). Substituting (E.9) into (E.8) and solving for c, we obtain 

the dispersion relationship 

C = Cc 
Bin-1 [(/J27T/Q/(/,/')] 

H2ir/l 
(E.10) 

where 
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X       I rP(f) 

fM=   . ,Vgf- (E.11) 
1 a. 'PI - 

Again, if we represent time continuously, this expression simplifies to 

c = csf(l,l'). (E.12) 

Clearly, whenever there is representational error (i.e., if the parasite wave is present such 

that rp (V) 7^ 0), the SAFER solution is also dispersive. 



Appendix F 

SPECTRAL CHARACTERISTICS OF THE DERIVATIVE 
CONSTRAINT 

In Chapter 2, section 2.2, we derived an expression for the reverse transformation from 

physical to spectral space. Included in this transformation was a derivative constraint, 

which serves as a low-pass filter. To better understand and quantify the effects of this 

filter, we analyze the spectral characteristics of the derivative constraint. 

F.l    Response Function 

To begin this analysis, we examine the effect of the derivative constraint on a single har- 

monic mode, excluding the spline representation of the mode. The total error between 

ü(x) and u(x), including the derivative constraint or penalty term given by (2.33), may 

be rewritten as 

L [u (x) - u {x)f + a ( -^ dx mm, (F.l) 

where j is the order of the derivative constraint and a is a yet undetermined parameter used 

to control the length scale of the filter. By minimizing this error, using the least-squares 

approximation, we obtained the transformation from physical to spectral space. 

Another minimization technique involves variational calculus. Talcing the variation, 5, of 

(F.l) and recognizing that 8u may be chosen arbitrarily, we obtain the following Euler- 

Lagrange equation for u in terms of ü 
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(-l)ja(^\+u(x) = ü(x). (F.2) 

Thus, given u, the solution of this equation yields the filtered version of u that also mini- 

mizes the total error. 

To understand how the filter alters the amplitude of u as compared to ü, consider the case 

when ü (x) = exp (i2irx/lAx) over the domain x G [0, /] with periodic boundary conditions, 

where I Ax is the wavelength and Ax is the nodal spacing. Assuming a solution of the form 

u (x) = ra (I) exp (i2nx/lAx), (F.2) reduces to 

(-1)'or« (*)(*'j^y    +r«(0 = l- (F-3) 

Recognizing that {-l)j [{i)2]3 = {-l)j {-l)j = [(-l)2]3 = 1 and letting a = (lcAx/2it)2j, 

the amplitude of u or the Fourier spectral response function is then given by 

ra (I) = 

L^frn 
(F.4) 

where lc is the cutoff wavelength. Figures F.la-c illustrate (F.4) for j = 1 — 3, respectively, 

each with lc = 2, 4, and 8 . As / increases, ra (I) approaches 1; conversely, for vanishingly 

small I, ra{l) reduces to 0. Notice that when I = lc, ra(lc) = \; therefore, lc is the 

wavelength for which the filter reduces the input amplitude by half. Also, as j increases, 

the slope of ra (I) increases, which sharpens the cutoff between filtered and unfiltered 

waves. Of course, if the spectral cutoff is too sharp, the solution in physical space may 

"ring with side lobes" due to the Gibbs effect (Ooyama, 1984). In summary, the derivative 

constraint acts as a low-pass filter with a (2j)th degree taper in the spectral response. 
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(c) 

Figure F.l: Response function ra (I) for derivative constraints a) j = 1, b) j = 2, and c) 
j = 3 and cutoff wavelengths, lc = 2,4,8. 
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F.2    Effective Viscocity 

We can easily show that the derivative constraint acts as numerical diffusion. By comparing 

this numerical diffusion with a form of physical diffusion, we can calculate an effective 

viscosity. The diffusion (or hyperdiffusion) equation for u, with no other forcing, is given 

by 

du d2ju ,„ _, 

« = -'US' <R5) 

where v is the viscosity coefficient. Using a backward finite—difference to approximate the 

time derivative, we obtain 

vAt°^±±+un+l=un, (F.6) 

where n indicates the time level and un+i represents the diffused form of the input un. 

Notice the similarity between (F.2) and (F.6). Based on this similarity, we infer that the 

derivative constraint acts as a numerical form of diffusion. Equating the coefficients of the 

derivatives in (F.2) and (F.6), we find that the effective viscosity coefficient is given by 

^=(-l)J'-1 (lcAx\2i 
At m- 

Thus, the larger the filter scale (i.e., lc) or the more often the derivative constraint is 

applied (i.e., the smaller At), the greater the diffusion. As an example, given j = 3,lc = 2, 

Ax = 500 m, and At = 2.5 s, the effective hyperviscosity coefficient is v = 6.5 x 1012m6s_1. 

Although this hyperdiffusion may seem large, it is spectrally focused due to the sixth-degree 

taper in the spectral response (see figure F.lc). 


